Approximation in probability of tensor product-type random fields of increasing parametric dimension
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 252-273
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider a sequence of Gaussian tensor product-type random fields $X_d$, $d\in\mathbb N$, given by
$$
X_d(t)=\sum_{k\in\widetilde{\mathbb N}^d}\prod_{l=1}^d\lambda_{k_l}^{1/2}\,\xi_k\,\prod_{l=1}^d\psi_{k_l}(t_l),\quad t\in [0,1]^d,
$$
where $(\lambda_i)_{i\in\widetilde{\mathbb N}}$ and $(\psi_i)_{i\in\widetilde{\mathbb N}}$ are all positive eigenvalues and eigenfunctions of covariance operator of process $X_1$, $(\xi_k)_{k\in\widetilde{\mathbb N}}$ are standard Gaussian random variables, and $\widetilde{\mathbb N}$ is a subset of natural numbers. We investigate the exact asymptotic behavior of probabilistic complexity of approximation for $X_d$ by partial sums $X_d^{(n)}$:
$$
n_d^{pr}(\varepsilon,\delta):=\min\Bigl\{n\in\mathbb N\colon\mathbf P\left(\|X_d-X_d^{(n)}\|^2_{2,d}>\varepsilon^2 \,\mathbf E\|X_d\|^2_{2,d}\right)\leqslant\delta\Bigr\},
$$
when the parametric dimension $d\to\infty$, the error threshold $\varepsilon\in(0,1)$ is fixed, and the confidence level $\delta=\delta_{d,\varepsilon}$ may go to zero.
@article{ZNSL_2013_412_a13,
author = {A. A. Khartov},
title = {Approximation in probability of tensor product-type random fields of increasing parametric dimension},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {252--273},
publisher = {mathdoc},
volume = {412},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a13/}
}
TY - JOUR AU - A. A. Khartov TI - Approximation in probability of tensor product-type random fields of increasing parametric dimension JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 252 EP - 273 VL - 412 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a13/ LA - ru ID - ZNSL_2013_412_a13 ER -
A. A. Khartov. Approximation in probability of tensor product-type random fields of increasing parametric dimension. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 252-273. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a13/