@article{ZNSL_2013_412_a12,
author = {L. V. Rozovsky},
title = {Small deviation probabilities for sums of independent positive random variables with distributions which are slowly varying at zero},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {237--251},
year = {2013},
volume = {412},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a12/}
}
TY - JOUR AU - L. V. Rozovsky TI - Small deviation probabilities for sums of independent positive random variables with distributions which are slowly varying at zero JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 237 EP - 251 VL - 412 UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a12/ LA - ru ID - ZNSL_2013_412_a12 ER -
%0 Journal Article %A L. V. Rozovsky %T Small deviation probabilities for sums of independent positive random variables with distributions which are slowly varying at zero %J Zapiski Nauchnykh Seminarov POMI %D 2013 %P 237-251 %V 412 %U http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a12/ %G ru %F ZNSL_2013_412_a12
L. V. Rozovsky. Small deviation probabilities for sums of independent positive random variables with distributions which are slowly varying at zero. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 237-251. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a12/
[1] T. Höglund, “A unified formulation of the central limit theorem for small and large deviations from the mean”, Z. Wahrscheinlichkeitstheor. verw. Geb., 49 (1979), 105–117 | DOI | MR | Zbl
[2] L. V. Rozovskii, “Veroyatnosti malykh uklonenii dlya odnogo klassa raspredelenii so stepennym ubyvaniem v nule”, Zap. nauchn. semin. POMI, 328, 2005, 182–190 | MR | Zbl
[3] L. V. Rozovskii, “O veroyatnostyakh malykh uklonenii polozhitelnykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 320, 2004, 150–159 | MR | Zbl
[4] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR
[5] L. V. Rozovsky, “Remarks on a link between Laplace transform and distribution function of a nonnegative random variable”, Statistics and Probability Letters, 79 (2009), 1501–1508 | DOI | MR | Zbl