@article{ZNSL_2013_412_a11,
author = {S. S. Rasova and B. P. Harlamov},
title = {Non-decreasing continuous {semi-Markov} processes: asymptotics and asymmetry},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {227--236},
year = {2013},
volume = {412},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a11/}
}
S. S. Rasova; B. P. Harlamov. Non-decreasing continuous semi-Markov processes: asymptotics and asymmetry. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 227-236. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a11/
[1] A. N. Borodin, P. Salminen, Handbook of Brownian Motion – Facts and Formulae, Birkhäuser Verlag, 1996 | MR | Zbl
[2] K. Ito, G. Makkin, Diffuzionnye protsessy i ikh traektorii, M., 1968
[3] E. Çinlar, “On increasing continuous processes”, Stochastic Process. Appl., 9 (1979), 147–154 | DOI | MR | Zbl
[4] J. D. Esary, A. W. Marshall, F. Proschan, “Shock models and wear processes”, Ann. Probab., 1 (1973), 627–649 | DOI | MR | Zbl
[5] I. B. Gertsbakh, Kh. B. Kordonskii, Modeli otkazov, M., 1966
[6] B. P. Kharlamov, “Obraschennyi protsess s nezavisimymi polozhitelnymi prirascheniyami: konechnomernye raspredeleniya”, Zap. nauchn. semin. POMI, 311, 2004, 286–297 | MR | Zbl
[7] B. P. Harlamov, “Continuous semi-Markov processes and their applications”, Commun. Statist., Theory and Methods, 33:3 (2004), 569–589 | DOI | MR | Zbl
[8] B. P. Harlamov, “Inverse gamma-process as a model of wear”, Longevity, Aging Degradation Models, v. 2, 2004, 180–190 | Zbl