Non-decreasing continuous semi-Markov processes: asymptotics and asymmetry
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 227-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The authors consider a non-decreasing continuous random process with a family of the first hitting times for levels $x>0$, which form Lévy process with positive increments. Asymptotics of the first three moments of their one-dimensional distributions as t goes to infinity are derived for the case when the Lévy density is $e^{-u}/u^\alpha$ $(1\leq\alpha<2)$.
@article{ZNSL_2013_412_a11,
     author = {S. S. Rasova and B. P. Harlamov},
     title = {Non-decreasing continuous {semi-Markov} processes: asymptotics and asymmetry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {227--236},
     year = {2013},
     volume = {412},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a11/}
}
TY  - JOUR
AU  - S. S. Rasova
AU  - B. P. Harlamov
TI  - Non-decreasing continuous semi-Markov processes: asymptotics and asymmetry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 227
EP  - 236
VL  - 412
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a11/
LA  - ru
ID  - ZNSL_2013_412_a11
ER  - 
%0 Journal Article
%A S. S. Rasova
%A B. P. Harlamov
%T Non-decreasing continuous semi-Markov processes: asymptotics and asymmetry
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 227-236
%V 412
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a11/
%G ru
%F ZNSL_2013_412_a11
S. S. Rasova; B. P. Harlamov. Non-decreasing continuous semi-Markov processes: asymptotics and asymmetry. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 227-236. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a11/

[1] A. N. Borodin, P. Salminen, Handbook of Brownian Motion – Facts and Formulae, Birkhäuser Verlag, 1996 | MR | Zbl

[2] K. Ito, G. Makkin, Diffuzionnye protsessy i ikh traektorii, M., 1968

[3] E. Çinlar, “On increasing continuous processes”, Stochastic Process. Appl., 9 (1979), 147–154 | DOI | MR | Zbl

[4] J. D. Esary, A. W. Marshall, F. Proschan, “Shock models and wear processes”, Ann. Probab., 1 (1973), 627–649 | DOI | MR | Zbl

[5] I. B. Gertsbakh, Kh. B. Kordonskii, Modeli otkazov, M., 1966

[6] B. P. Kharlamov, “Obraschennyi protsess s nezavisimymi polozhitelnymi prirascheniyami: konechnomernye raspredeleniya”, Zap. nauchn. semin. POMI, 311, 2004, 286–297 | MR | Zbl

[7] B. P. Harlamov, “Continuous semi-Markov processes and their applications”, Commun. Statist., Theory and Methods, 33:3 (2004), 569–589 | DOI | MR | Zbl

[8] B. P. Harlamov, “Inverse gamma-process as a model of wear”, Longevity, Aging Degradation Models, v. 2, 2004, 180–190 | Zbl