Non-decreasing continuous semi-Markov processes: asymptotics and asymmetry
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 227-236
Voir la notice de l'article provenant de la source Math-Net.Ru
The authors consider a non-decreasing continuous random process with a family of the first hitting times for levels $x>0$, which form Lévy process with positive increments. Asymptotics of the first three moments of their one-dimensional distributions as t goes to infinity are derived for the case when the Lévy density is $e^{-u}/u^\alpha$ $(1\leq\alpha2)$.
@article{ZNSL_2013_412_a11,
author = {S. S. Rasova and B. P. Harlamov},
title = {Non-decreasing continuous {semi-Markov} processes: asymptotics and asymmetry},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {227--236},
publisher = {mathdoc},
volume = {412},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a11/}
}
TY - JOUR AU - S. S. Rasova AU - B. P. Harlamov TI - Non-decreasing continuous semi-Markov processes: asymptotics and asymmetry JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 227 EP - 236 VL - 412 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a11/ LA - ru ID - ZNSL_2013_412_a11 ER -
S. S. Rasova; B. P. Harlamov. Non-decreasing continuous semi-Markov processes: asymptotics and asymmetry. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 19, Tome 412 (2013), pp. 227-236. http://geodesic.mathdoc.fr/item/ZNSL_2013_412_a11/