The Kruskal--Katona function, Conway sequence, Takagi curve, and Pascal adic
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 135-147
Voir la notice de l'article provenant de la source Math-Net.Ru
We study interrelations between the Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic. Using the results of the current paper and, in particular, the convergence of the sequence $2a(n)-n$, where $a(n)$ is the Conway sequence, to the family of generalized Takagi curves, we prove a similar result for the Kruskal–Katona function. Moreover, a recursive method of computing the values of the Kruskal–Katona function is suggested.
@article{ZNSL_2013_411_a8,
author = {A. R. Minabutdinov and I. E. Manaev},
title = {The {Kruskal--Katona} function, {Conway} sequence, {Takagi} curve, and {Pascal} adic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--147},
publisher = {mathdoc},
volume = {411},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a8/}
}
TY - JOUR AU - A. R. Minabutdinov AU - I. E. Manaev TI - The Kruskal--Katona function, Conway sequence, Takagi curve, and Pascal adic JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 135 EP - 147 VL - 411 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a8/ LA - ru ID - ZNSL_2013_411_a8 ER -
A. R. Minabutdinov; I. E. Manaev. The Kruskal--Katona function, Conway sequence, Takagi curve, and Pascal adic. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 135-147. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a8/