The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 135-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study interrelations between the Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic. Using the results of the current paper and, in particular, the convergence of the sequence $2a(n)-n$, where $a(n)$ is the Conway sequence, to the family of generalized Takagi curves, we prove a similar result for the Kruskal–Katona function. Moreover, a recursive method of computing the values of the Kruskal–Katona function is suggested.
@article{ZNSL_2013_411_a8,
     author = {A. R. Minabutdinov and I. E. Manaev},
     title = {The {Kruskal{\textendash}Katona} function, {Conway} sequence, {Takagi} curve, and {Pascal} adic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--147},
     year = {2013},
     volume = {411},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a8/}
}
TY  - JOUR
AU  - A. R. Minabutdinov
AU  - I. E. Manaev
TI  - The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 135
EP  - 147
VL  - 411
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a8/
LA  - ru
ID  - ZNSL_2013_411_a8
ER  - 
%0 Journal Article
%A A. R. Minabutdinov
%A I. E. Manaev
%T The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 135-147
%V 411
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a8/
%G ru
%F ZNSL_2013_411_a8
A. R. Minabutdinov; I. E. Manaev. The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 135-147. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a8/

[1] J. B. Kruskal, “The number of simplices in a complex”, Math. Optimization Tech., 1963, 251–278 | MR | Zbl

[2] G. O. H. Katona, “A theorem of finite sets”, Theory of Graphs, Proc. Colloqium Tihany, Hungary, 1968, 187–207 | MR | Zbl

[3] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam–New York–Oxford, 1979, Problem 3.3 | MR | Zbl

[4] P. Frankl, M. Matsumoto, I. Z. Ruzsa, N. Tokushige, “Minimum shadows in uniform hypergraphs and a generalization of the Takagi function”, J. Combin. Theory, Ser. A, 69:1 (1995), 125–148 | DOI | MR | Zbl

[5] R. O'Donnell, K. Wimmer, “KKL, Kruskal–Katona and monotone nets”, FOCS' 09, Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, 2009, 725–734 | MR | Zbl

[6] A. Frohmader, Approximations to the Kruskal–Katona theorem, 2010, arXiv: 1010.2288

[7] S. L. Bezrukov, “Isoperimetric problems in discrete spaces”, Bolyai Soc. Math. Stud., 3 (1994), 59–91 | MR | Zbl

[8] E. Janvresse, T. de la Rue, Y. Velenik, “Self-similar corrections to the ergodic theorem for the Pascal-adic transformation”, Stoch. Dyn., 5:1 (2005), 1–25 | DOI | MR | Zbl

[9] C. L. Mallows, “Conway's challenge sequence”, Amer. Math. Monthly, 98:1 (1991), 5–20 | DOI | MR | Zbl

[10] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR | Zbl

[11] A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Asimptotika masshtabirovannoi entropii avtomorfizma Paskalya”, Zap. nauchn. semin. POMI, 378, 2010, 58–72 | MR

[12] A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Realizatsiya avtomorfizma Paskalya v grafe konkatenatsii i funktsiya $s_2(n)$”, Zap. nauchn. semin. POMI, 403, 2012, 95–102

[13] X. Mela, K. Petersen, “Dynamical properties of the Pascal adic transformation”, Ergodic Theory Dynam. Systems, 25 (2005), 227–256 | DOI | MR | Zbl

[14] A. M. Vershik, Lichnaya beseda

[15] T. Kubo, R. Vakil, “On Conway's recursive sequence”, Discrete Math., 152:1–3 (1996), 225–252 | DOI | MR | Zbl

[16] T. Takagi, “A simple example of the continuous function without derivative”, Tokio Math. Ges., 1 (1903), 176–177 | Zbl

[17] P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal., 37:1 (2011), 1–54 | MR

[18] J. C. Lagarias, The Takagi function and its properties, arXiv: 1112.4205