The spectrum of a~perturbation of a~hyperbolic toral automorphism
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 125-134
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a Markov operator (i.e., a contraction preserving the subspace of constants and the nonnegativity of functions) in the $L^2$ space on the $n$-dimensional torus that is a special perturbation of the unitary operator corresponding to a hyperbolic toral automorphism. We prove some properties of its spectrum and the spectrum of some related operators.
@article{ZNSL_2013_411_a7,
author = {A. M. Levin},
title = {The spectrum of a~perturbation of a~hyperbolic toral automorphism},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--134},
publisher = {mathdoc},
volume = {411},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a7/}
}
A. M. Levin. The spectrum of a~perturbation of a~hyperbolic toral automorphism. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 125-134. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a7/