The spectrum of a perturbation of a hyperbolic toral automorphism
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 125-134
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we consider a Markov operator (i.e., a contraction preserving the subspace of constants and the nonnegativity of functions) in the $L^2$ space on the $n$-dimensional torus that is a special perturbation of the unitary operator corresponding to a hyperbolic toral automorphism. We prove some properties of its spectrum and the spectrum of some related operators.
@article{ZNSL_2013_411_a7,
author = {A. M. Levin},
title = {The spectrum of a~perturbation of a~hyperbolic toral automorphism},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--134},
year = {2013},
volume = {411},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a7/}
}
A. M. Levin. The spectrum of a perturbation of a hyperbolic toral automorphism. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 125-134. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a7/
[1] A. M. Vershik, “Polymorphisms, Markov processes, quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl
[2] A. M. Vershik, “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie operatory”, Zap. nauchn. semin. LOMI, 72, 1977, 26–61 | MR | Zbl
[3] A. M. Vershik, “Sverkhgrubost giperbolicheskikh avtomorfizmov i unitarnye dilatatsii markovskikh operatorov”, Vestnik LGU, ser. 1, 1987, no. 3, 28–33 | MR | Zbl
[4] P. Khalmosh, Gilbertovo prostranstvo v zadachakh, Moskva, M., 1970