Sandpile groups and the join of graphs
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 119-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We introduce the procedure of joining two graphs by identifying an arbitrary pair of their vertices. The main result is that the sandpile group of the join of several finite graphs is the direct product of the sandpile groups of the components. Some consequences are derived.
@article{ZNSL_2013_411_a6,
     author = {I. A. Krepkiy},
     title = {Sandpile groups and the join of graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {119--124},
     year = {2013},
     volume = {411},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a6/}
}
TY  - JOUR
AU  - I. A. Krepkiy
TI  - Sandpile groups and the join of graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 119
EP  - 124
VL  - 411
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a6/
LA  - ru
ID  - ZNSL_2013_411_a6
ER  - 
%0 Journal Article
%A I. A. Krepkiy
%T Sandpile groups and the join of graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 119-124
%V 411
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a6/
%G ru
%F ZNSL_2013_411_a6
I. A. Krepkiy. Sandpile groups and the join of graphs. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 119-124. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a6/

[1] A. E. Holroyd, L. Levine, K. Meszaros, Yu. Peres, J. Propp, D. B. Wilson, Chip-firing and rotor-routing on directed graphs, arXiv: 0801.3306 | MR

[2] I. A. Krepkii, Pesochnye gruppy treugolnykh binarnykh derevev, Preprint , POMI, 2012 http://www.pdmi.ras.ru/preprint/2012/12-21.html

[3] K. R. Matthews, Smith normal form MP274: Linear Algebra, , Lecture Notes, University of Queensland, 1991 http://www.numbertheory.org/courses/MP274/smith.pdf