Sobolev regularity for the Monge--Amp\`ere equation, with application to the semigeostrophic equations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 103-118

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we review some recent results on the Sobolev regularity of solutions to the Monge–Ampère equation, and show how these estimates can be used to prove some global existence results for the semigeostrophic equations.
@article{ZNSL_2013_411_a5,
     author = {Alessio Figalli},
     title = {Sobolev regularity for the {Monge--Amp\`ere} equation, with application to the semigeostrophic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--118},
     publisher = {mathdoc},
     volume = {411},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a5/}
}
TY  - JOUR
AU  - Alessio Figalli
TI  - Sobolev regularity for the Monge--Amp\`ere equation, with application to the semigeostrophic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 103
EP  - 118
VL  - 411
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a5/
LA  - en
ID  - ZNSL_2013_411_a5
ER  - 
%0 Journal Article
%A Alessio Figalli
%T Sobolev regularity for the Monge--Amp\`ere equation, with application to the semigeostrophic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 103-118
%V 411
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a5/
%G en
%F ZNSL_2013_411_a5
Alessio Figalli. Sobolev regularity for the Monge--Amp\`ere equation, with application to the semigeostrophic equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 103-118. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a5/