Sobolev regularity for the Monge--Amp\`ere equation, with application to the semigeostrophic equations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 103-118
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we review some recent results on the Sobolev regularity of solutions to the Monge–Ampère equation, and show how these estimates can be used to prove some global existence results for the semigeostrophic equations.
@article{ZNSL_2013_411_a5,
author = {Alessio Figalli},
title = {Sobolev regularity for the {Monge--Amp\`ere} equation, with application to the semigeostrophic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {103--118},
publisher = {mathdoc},
volume = {411},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a5/}
}
TY - JOUR AU - Alessio Figalli TI - Sobolev regularity for the Monge--Amp\`ere equation, with application to the semigeostrophic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 103 EP - 118 VL - 411 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a5/ LA - en ID - ZNSL_2013_411_a5 ER -
Alessio Figalli. Sobolev regularity for the Monge--Amp\`ere equation, with application to the semigeostrophic equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 103-118. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a5/