Towards a~Monge--Kantorovich metric in noncommutative geometry
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 85-102

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate whether the identification between Connes' spectral distance in noncommutative geometry and the Monge–Kantorovich distance of order 1 in the theory of optimal transport – that has been pointed out by Rieffel in the commutative case – still makes sense in a noncommutative framework. To this aim, given a spectral triple $(\mathcal A,\mathcal H, D)$ with noncommutative $\mathcal A$, we introduce a “Monge–Kantorovich”-like distance $W_D$ on the space of states of $\mathcal A$, taking as a cost function the spectral distance $d_D$ between pure states. We show in full generality that $d_D\leq W_D$, and exhibit several examples where the equality actually holds true, in particular on the unit two-ball viewed as the state space of $M_2(\mathbb C)$. We also discuss $W_D$ in a two-sheet model (product of a manifold by $\mathbb C^2$), pointing towards a possible interpretation of the Higgs field as a cost function that does not vanish on the diagonal.
@article{ZNSL_2013_411_a4,
     author = {P. Martinetti},
     title = {Towards {a~Monge--Kantorovich} metric in noncommutative geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--102},
     publisher = {mathdoc},
     volume = {411},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a4/}
}
TY  - JOUR
AU  - P. Martinetti
TI  - Towards a~Monge--Kantorovich metric in noncommutative geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 85
EP  - 102
VL  - 411
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a4/
LA  - en
ID  - ZNSL_2013_411_a4
ER  - 
%0 Journal Article
%A P. Martinetti
%T Towards a~Monge--Kantorovich metric in noncommutative geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 85-102
%V 411
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a4/
%G en
%F ZNSL_2013_411_a4
P. Martinetti. Towards a~Monge--Kantorovich metric in noncommutative geometry. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 85-102. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a4/