Towards a Monge–Kantorovich metric in noncommutative geometry
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 85-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate whether the identification between Connes' spectral distance in noncommutative geometry and the Monge–Kantorovich distance of order 1 in the theory of optimal transport – that has been pointed out by Rieffel in the commutative case – still makes sense in a noncommutative framework. To this aim, given a spectral triple $(\mathcal A,\mathcal H, D)$ with noncommutative $\mathcal A$, we introduce a “Monge–Kantorovich”-like distance $W_D$ on the space of states of $\mathcal A$, taking as a cost function the spectral distance $d_D$ between pure states. We show in full generality that $d_D\leq W_D$, and exhibit several examples where the equality actually holds true, in particular on the unit two-ball viewed as the state space of $M_2(\mathbb C)$. We also discuss $W_D$ in a two-sheet model (product of a manifold by $\mathbb C^2$), pointing towards a possible interpretation of the Higgs field as a cost function that does not vanish on the diagonal.
@article{ZNSL_2013_411_a4,
     author = {P. Martinetti},
     title = {Towards {a~Monge{\textendash}Kantorovich} metric in noncommutative geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--102},
     year = {2013},
     volume = {411},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a4/}
}
TY  - JOUR
AU  - P. Martinetti
TI  - Towards a Monge–Kantorovich metric in noncommutative geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 85
EP  - 102
VL  - 411
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a4/
LA  - en
ID  - ZNSL_2013_411_a4
ER  - 
%0 Journal Article
%A P. Martinetti
%T Towards a Monge–Kantorovich metric in noncommutative geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 85-102
%V 411
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a4/
%G en
%F ZNSL_2013_411_a4
P. Martinetti. Towards a Monge–Kantorovich metric in noncommutative geometry. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 85-102. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a4/

[1] P. Biane, D. Voiculescu, “A free probability analogue of the Wasserstein metric in the trace state space”, GAFA, 11:6 (2001), 1125–1138 | DOI | MR | Zbl

[2] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, v. 1, Springer, 1987 | MR | Zbl

[3] E. Cagnache, F. d'Andrea, P. Martinetti, J.-C. Wallet, “The spectral distance on Moyal plane”, J. Geom. Phys., 61 (2011), 1881–1897 | DOI | MR | Zbl

[4] A. H. Chamseddine, A. Connes, M. Marcolli, “Gravity and the standard model with neutrino mixing”, Adv. Theor. Math. Phys., 11 (2007), 991–1089 | DOI | MR | Zbl

[5] The ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Physics Letters B, 716:1 (2012), 1–29 | DOI

[6] A. Connes, “Compact metric spaces, Fredholm modules, and hyperfiniteness”, Ergod. Th. Dynam. Sys., 9 (1989), 207–220 | MR | Zbl

[7] A. Connes, Noncommutative geometry, Academic Press, 1994 | MR | Zbl

[8] A. Connes, “Gravity coupled with matter and the foundations of noncommutative geometry”, Commun. Math. Phys., 182 (1996), 155–176 | DOI | MR | Zbl

[9] A. Connes, On the spectral characterization of manifolds, 2008, arXiv: 0810.2088 | MR

[10] A. Connes, J. Lott, “The metric aspect of noncommutative geometry”, Nato ASI, Ser. B Phys., 295 (1992), 53–93 | DOI | MR | Zbl

[11] F. D'Andrea, P. Martinetti, “A view on optimal transport from noncommutative geometry”, SIGMA, 6 (2010), Paper 057, 24 pp. | DOI | MR | Zbl

[12] B. Iochum, T. Krajewski, P. Martinetti, “Distances in finite spaces from noncommutative geometry”, J. Geom. Phy., 31 (2001), 100–125 | DOI | MR

[13] L. V. Kantorovich, “On the transfer of masses”, Dokl. Akad. Nauk. SSSR, 37 (1942), 227–229

[14] L. V. Kantorovich, G. S. Rubinstein, “On a space of totally additive functions”, Vestn. Leningrad Univ., 1958, no. 13, 52–58 | MR

[15] P. Martinetti, Distances en géométrie non-commutative, PhD Thesis, 2001; math-ph/0112038v1

[16] P. Martinetti, “Spectral distance on the circle”, J. Func. Anal., 255 (2008), 1575–1612 | DOI | MR | Zbl

[17] Pierre Martinetti, Raimar Wulkenhaar, “Discrete Kaluza–Klein from scalar fluctuations in noncommutative geometry”, J. Math. Phys., 43:1 (2002), 182–204 | DOI | MR | Zbl

[18] Marc A. Rieffel, “Metric on state spaces”, Documenta Math., 4 (1999), 559–600 | MR | Zbl