Some results on Sobolev spaces with respect to a~measure and applications to a~new transport problem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 63-84

Voir la notice de l'article provenant de la source Math-Net.Ru

We recall some known and present several new results about Sobolev spaces defined with respect to a measure $\mu$, in particular a precise pointwise description of the tangent space to $\mu$ in dimension 1. This allows to obtain an interesting, original compactness result which stays open in $\mathbb R^d$, $d>1$, and can be applied to a new transport problem, with gradient penalization.
@article{ZNSL_2013_411_a3,
     author = {J. Louet},
     title = {Some results on {Sobolev} spaces with respect to a~measure and applications to a~new transport problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--84},
     publisher = {mathdoc},
     volume = {411},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a3/}
}
TY  - JOUR
AU  - J. Louet
TI  - Some results on Sobolev spaces with respect to a~measure and applications to a~new transport problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 63
EP  - 84
VL  - 411
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a3/
LA  - en
ID  - ZNSL_2013_411_a3
ER  - 
%0 Journal Article
%A J. Louet
%T Some results on Sobolev spaces with respect to a~measure and applications to a~new transport problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 63-84
%V 411
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a3/
%G en
%F ZNSL_2013_411_a3
J. Louet. Some results on Sobolev spaces with respect to a~measure and applications to a~new transport problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 63-84. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a3/