Some results on Sobolev spaces with respect to a~measure and applications to a~new transport problem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 63-84
Voir la notice de l'article provenant de la source Math-Net.Ru
We recall some known and present several new results about Sobolev spaces defined with respect to a measure $\mu$, in particular a precise pointwise description of the tangent space to $\mu$ in dimension 1. This allows to obtain an interesting, original compactness result which stays open in $\mathbb R^d$, $d>1$, and can be applied to a new transport problem, with gradient penalization.
@article{ZNSL_2013_411_a3, author = {J. Louet}, title = {Some results on {Sobolev} spaces with respect to a~measure and applications to a~new transport problem}, journal = {Zapiski Nauchnykh Seminarov POMI}, pages = {63--84}, publisher = {mathdoc}, volume = {411}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a3/} }
TY - JOUR AU - J. Louet TI - Some results on Sobolev spaces with respect to a~measure and applications to a~new transport problem JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 63 EP - 84 VL - 411 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a3/ LA - en ID - ZNSL_2013_411_a3 ER -
J. Louet. Some results on Sobolev spaces with respect to a~measure and applications to a~new transport problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 63-84. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a3/