@article{ZNSL_2013_411_a3,
author = {J. Louet},
title = {Some results on {Sobolev} spaces with respect to a~measure and applications to a~new transport problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {63--84},
year = {2013},
volume = {411},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a3/}
}
J. Louet. Some results on Sobolev spaces with respect to a measure and applications to a new transport problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 63-84. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a3/
[1] S. Angenent, S. Haker, R. Kikinis, A. Tannenbaum, “On area preserving maps of minimal distorsion”, System theory: modeling, analysis and control, Kluwer Acad. Publ., 2000, 275–286 | DOI | MR | Zbl
[2] G. Bouchitté, G. Buttazzo, P. Seppecher, “Energies with respect to a measure and applications to low dimensional structures”, Calc. Var., 5 (1997), 37–54 | DOI | MR | Zbl
[3] G. Bouchitté, I. Fragalà, “Second-order energies on thin structures: variational theory and non-local effects”, J. Funct. Anal., 204:1 (2003), 228–267 | DOI | MR | Zbl
[4] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Springer-Verlag, 1977 | MR | Zbl
[5] I. Fragalà, Tangential calculus and variational integrals with respect to a measure, Ph. D. thesis, 2000 http://cvgmt.sns.it/paper/518/
[6] I. Fragalà, C. Mantegazza, “On some notions of tangent space to a measure”, Proc. Roy Soc. Edinburgh A, 129 (1999), 331–342 | DOI | MR | Zbl
[7] P. Hajłasz, “Sobolev Spaces on an Arbitrary Metric Space”, Potential Analysis, 5 (1996), 403–415 | MR | Zbl
[8] P. Hajłasz, “Sobolev spaces on metric-measure spaces”, Contemp. Math., 338 (2003), 173–218 | DOI | MR | Zbl
[9] P. Hajłasz, P. Koskela, “Sobolev met Poincaré”, Mem. Amer. Math. Soc., 688 (2000), 1–101 | MR
[10] A. Kufner, B. Opic, “How to define reasonably weighted Sobolev spaces”, Comment. Math. Univ. Carol., 25:3 (1984), 537–554 | MR | Zbl
[11] J. Louet, F. Santambrogio, “A sharp inequality for transport maps in $W^{1,p}(\mathbb R)$ via approximation”, Applied Math. Letters, 25 (2012), 648–653 | DOI | MR | Zbl
[12] D. Preiss, “Geometry of measures on $\mathbb R^n$: distribution, rectifiability and densities”, Ann. Math., 125 (1987), 573–643 | DOI | MR
[13] N. Shanmugalingam, “Newtonian spaces: an extension of Sobolev spaces to metric measure spaces”, Rev. Mat. Iberoamericana, 16 (2000), 243–279 | DOI | MR | Zbl
[14] C. Villani, Optimal transport: Old and New, Springer-Verlag, 2008 | MR
[15] V. V. Zhikov, “On an extension of the method of two-scale convergence and its applications”, Sb. Math., 191 (2000), 973–1014 | DOI | MR | Zbl
[16] V. V. Zhikov, “Homogenization of elasticity problems on singluar structures”, Izv. Math., 66:2 (2002), 299–365 | DOI | MR | Zbl