Amari–Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 49-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the family of $\alpha$-connections of Amari–Chentsov on the homogeneous space $\mathcal D(M)/\mathcal D_\mu(M)$ of diffeomorphisms modulo volume-preserving diffeomorphims of a compact manifold $M$. We show that in some cases their geodesic equations yield completely integrable Hamiltonian systems.
@article{ZNSL_2013_411_a2,
     author = {J. Lenells and G. Misio{\l}ek},
     title = {Amari{\textendash}Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--62},
     year = {2013},
     volume = {411},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/}
}
TY  - JOUR
AU  - J. Lenells
AU  - G. Misiołek
TI  - Amari–Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 49
EP  - 62
VL  - 411
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/
LA  - en
ID  - ZNSL_2013_411_a2
ER  - 
%0 Journal Article
%A J. Lenells
%A G. Misiołek
%T Amari–Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 49-62
%V 411
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/
%G en
%F ZNSL_2013_411_a2
J. Lenells; G. Misiołek. Amari–Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 49-62. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/

[1] S. I. Amari, H. Nagaoka, Methods of Information Geometry, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[2] V. I. Arnold, “Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses application à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16 (1966), 319–361 | DOI | MR | Zbl

[3] N. N. Chentsov, Statistical Decision Rules and Optimal Inference, Amer. Math. Soc., Providence, RI, 1982 | MR | Zbl

[4] P. Gibilisco, T. Isola, “Connections on statistical manifolds of density operators by geometry of noncommutative $L^p$-spaces”, Infin. Dimen. Anal. Quantum Prob. Rel. Top., 2 (1999), 169–178 | DOI | MR | Zbl

[5] R. Kass, P. Vos, Geometrical Foundations of Asymptotic Inference, Wiley-Interscience, New York, 1997 | MR | Zbl

[6] B. Khesin, J. Lenells, G. Misiołek, S. Preston, “Geometry of diffeomorphism groups, complete integrability and geometric statistics”, Geom. Funct. Anal. (GAFA), 2013 (to appear) | MR

[7] B. Khesin, G. Misiołek, “Euler equations on homogeneous spaces and Virasoro orbits”, Adv. Math., 176 (2003), 116–144 | DOI | MR | Zbl

[8] J. Lenells, “The Hunter–Saxton equation describes the geodesic flow on a sphere”, J. Geom. Phys., 57 (2007), 2049–2064 | DOI | MR | Zbl

[9] E. A. Morozova, N. N. Chentsov, “Natural geometry of families of probability laws”, Itogi Nauki Tekhniki, Akad. Nauk SSSR, 83, 1991, 133–265 | MR | Zbl

[10] C. Villani, Optimal Transport: Old and New, Springer, New York, 2009 | MR