Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 49-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the family of $\alpha$-connections of Amari–Chentsov on the homogeneous space $\mathcal D(M)/\mathcal D_\mu(M)$ of diffeomorphisms modulo volume-preserving diffeomorphims of a compact manifold $M$. We show that in some cases their geodesic equations yield completely integrable Hamiltonian systems.
@article{ZNSL_2013_411_a2,
     author = {J. Lenells and G. Misio{\l}ek},
     title = {Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {411},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/}
}
TY  - JOUR
AU  - J. Lenells
AU  - G. Misiołek
TI  - Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 49
EP  - 62
VL  - 411
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/
LA  - en
ID  - ZNSL_2013_411_a2
ER  - 
%0 Journal Article
%A J. Lenells
%A G. Misiołek
%T Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 49-62
%V 411
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/
%G en
%F ZNSL_2013_411_a2
J. Lenells; G. Misiołek. Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 49-62. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/