Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 49-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the family of $\alpha$-connections of Amari–Chentsov on the homogeneous space $\mathcal D(M)/\mathcal D_\mu(M)$ of diffeomorphisms modulo volume-preserving diffeomorphims of a compact manifold $M$. We show that in some cases their geodesic equations yield completely integrable Hamiltonian systems.
@article{ZNSL_2013_411_a2,
author = {J. Lenells and G. Misio{\l}ek},
title = {Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {49--62},
publisher = {mathdoc},
volume = {411},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/}
}
TY - JOUR AU - J. Lenells AU - G. Misiołek TI - Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 49 EP - 62 VL - 411 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/ LA - en ID - ZNSL_2013_411_a2 ER -
J. Lenells; G. Misiołek. Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 49-62. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a2/