A deterministic polynomial-time algorithm for the first Bertini theorem. I
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 191-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider a projective algebraic variety $W$ that is an irreducible component of the set of all common zeros of a family of homogeneous polynomials of degree less than $d$ in $n+1$ variables in zero characteristic. Consider a linear system on $W$ given by homogeneous polynomials of degree $d'$. Under the conditions of the first Bertini theorem for $W$ and this linear system, we show how to construct an irreducible divisor in general position from the statement of this theorem. The algorithm is deterministic and polynomial in $(dd')^n$ and the size of the input.
@article{ZNSL_2013_411_a11,
     author = {A. L. Chistov},
     title = {A deterministic polynomial-time algorithm for the first {Bertini} {theorem.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--239},
     year = {2013},
     volume = {411},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - A deterministic polynomial-time algorithm for the first Bertini theorem. I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 191
EP  - 239
VL  - 411
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/
LA  - ru
ID  - ZNSL_2013_411_a11
ER  - 
%0 Journal Article
%A A. L. Chistov
%T A deterministic polynomial-time algorithm for the first Bertini theorem. I
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 191-239
%V 411
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/
%G ru
%F ZNSL_2013_411_a11
A. L. Chistov. A deterministic polynomial-time algorithm for the first Bertini theorem. I. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 191-239. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/

[1] M. Baldassarri, Algebraicheskie mnogoobraziya, Izd. inostr. lit., M., 1961 | MR

[2] N. Burbaki, Kommutativnaya algebra, Mir, M., 1971 | MR

[3] N. G. Chebotarev, Teoriya algebraicheskikh funktsii, OGIZ, M.–L., 1948

[4] A. L. Chistov, “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188 | MR | Zbl

[5] A. L. Chistov, “Vychislenie stepenei algebraicheskikh mnogoobrazii nad polem nulevoi kharakteristiki za polinomialnoe vremya i ego prilozheniya”, Zap. nauchn. semin. POMI, 258, 1999, 7–59 | MR | Zbl

[6] A. L. Chistov, “Effektivnaya konstruktsiya lokalnykh parametrov neprivodimykh komponent algebraicheskogo mnogoobraziya”, Trudy S.-Peterb. mat. obsch., 7, 1999, 230–266 | MR

[7] A. L. Chistov, “Silnaya versiya osnovnogo razreshayuschego algoritma dlya ekzistentsionalnoi teorii pervogo poryadka veschestvenno zamknutykh polei”, Zap. nauchn. semin. POMI, 256, 1999, 168–211 | MR | Zbl

[8] A. L. Chistov, “Effektivnaya gladkaya stratifikatsiya algebraicheskogo mnogoobraziya v nulevoi kharakteristike i eë prilozheniya”, Zap. nauchn. semin. POMI, 266, 2000, 254–311 | MR | Zbl

[9] A. L. Chistov, “Monodromiya i kriterii neprivodimosti s algoritmicheskimi prilozheniyami v nulevoi kharakteristicheske”, Zap. nauchn. semin. POMI, 292, 2002, 130–152 | MR | Zbl

[10] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya. I”, Zap. nauchn. semin. POMI, 307, 2004, 189–235 | MR | Zbl

[11] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya. II”, Zap. nauchn. semin. POMI, 325, 2005, 181–224 | MR | Zbl

[12] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya. III”, Zap. nauchn. semin. POMI, 344, 2007, 203–239 | MR

[13] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya. IV”, Zap. nauchn. semin. POMI, 360, 2008, 260–294 | MR | Zbl

[14] A. L. Chistov, “Otsenka stepeni sistemy uravnenii, zadayuschei mnogoobrazie privodimykh mnogochlenov”, Algebra i analiz, 24:3 (2012), 199–222 | MR

[15] A. L. Chistov, “Polynomial-time computation of the dimensions of components of algebraic varieties in zero-characteristic”, J. Pure Appl. Algebra, 117–118 (1997), 145–175 | DOI | MR | Zbl

[16] A. Chistov, H. Fournier, L. Gurvits, P. Koiran, “Vandermonde matrices, NP-completeness, and transversal subspaces”, Found. Comput. Math., 3:4 (2003), 421–427 | DOI | MR | Zbl

[17] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Springer-Verlag, Berlin–Heidelberg–New York, 1987 | MR | Zbl

[18] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl

[19] C. Jordan, Traité des substitutions et des équations algébriques, Paris, 1870, 277–279

[20] O. Zariski, “Pencils on an algebraic variety and a new proof of a theorem of Bertini”, Trans. Amer. Math. Soc., 50 (1941), 48–70 | DOI | MR | Zbl