A deterministic polynomial-time algorithm for the first Bertini theorem.~I
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 191-239

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a projective algebraic variety $W$ that is an irreducible component of the set of all common zeros of a family of homogeneous polynomials of degree less than $d$ in $n+1$ variables in zero characteristic. Consider a linear system on $W$ given by homogeneous polynomials of degree $d'$. Under the conditions of the first Bertini theorem for $W$ and this linear system, we show how to construct an irreducible divisor in general position from the statement of this theorem. The algorithm is deterministic and polynomial in $(dd')^n$ and the size of the input.
@article{ZNSL_2013_411_a11,
     author = {A. L. Chistov},
     title = {A deterministic polynomial-time algorithm for the first {Bertini} {theorem.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--239},
     publisher = {mathdoc},
     volume = {411},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - A deterministic polynomial-time algorithm for the first Bertini theorem.~I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 191
EP  - 239
VL  - 411
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/
LA  - ru
ID  - ZNSL_2013_411_a11
ER  - 
%0 Journal Article
%A A. L. Chistov
%T A deterministic polynomial-time algorithm for the first Bertini theorem.~I
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 191-239
%V 411
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/
%G ru
%F ZNSL_2013_411_a11
A. L. Chistov. A deterministic polynomial-time algorithm for the first Bertini theorem.~I. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 191-239. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/