@article{ZNSL_2013_411_a11,
author = {A. L. Chistov},
title = {A deterministic polynomial-time algorithm for the first {Bertini} {theorem.~I}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {191--239},
year = {2013},
volume = {411},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/}
}
A. L. Chistov. A deterministic polynomial-time algorithm for the first Bertini theorem. I. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 191-239. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a11/
[1] M. Baldassarri, Algebraicheskie mnogoobraziya, Izd. inostr. lit., M., 1961 | MR
[2] N. Burbaki, Kommutativnaya algebra, Mir, M., 1971 | MR
[3] N. G. Chebotarev, Teoriya algebraicheskikh funktsii, OGIZ, M.–L., 1948
[4] A. L. Chistov, “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188 | MR | Zbl
[5] A. L. Chistov, “Vychislenie stepenei algebraicheskikh mnogoobrazii nad polem nulevoi kharakteristiki za polinomialnoe vremya i ego prilozheniya”, Zap. nauchn. semin. POMI, 258, 1999, 7–59 | MR | Zbl
[6] A. L. Chistov, “Effektivnaya konstruktsiya lokalnykh parametrov neprivodimykh komponent algebraicheskogo mnogoobraziya”, Trudy S.-Peterb. mat. obsch., 7, 1999, 230–266 | MR
[7] A. L. Chistov, “Silnaya versiya osnovnogo razreshayuschego algoritma dlya ekzistentsionalnoi teorii pervogo poryadka veschestvenno zamknutykh polei”, Zap. nauchn. semin. POMI, 256, 1999, 168–211 | MR | Zbl
[8] A. L. Chistov, “Effektivnaya gladkaya stratifikatsiya algebraicheskogo mnogoobraziya v nulevoi kharakteristike i eë prilozheniya”, Zap. nauchn. semin. POMI, 266, 2000, 254–311 | MR | Zbl
[9] A. L. Chistov, “Monodromiya i kriterii neprivodimosti s algoritmicheskimi prilozheniyami v nulevoi kharakteristicheske”, Zap. nauchn. semin. POMI, 292, 2002, 130–152 | MR | Zbl
[10] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya. I”, Zap. nauchn. semin. POMI, 307, 2004, 189–235 | MR | Zbl
[11] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya. II”, Zap. nauchn. semin. POMI, 325, 2005, 181–224 | MR | Zbl
[12] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya. III”, Zap. nauchn. semin. POMI, 344, 2007, 203–239 | MR
[13] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya. IV”, Zap. nauchn. semin. POMI, 360, 2008, 260–294 | MR | Zbl
[14] A. L. Chistov, “Otsenka stepeni sistemy uravnenii, zadayuschei mnogoobrazie privodimykh mnogochlenov”, Algebra i analiz, 24:3 (2012), 199–222 | MR
[15] A. L. Chistov, “Polynomial-time computation of the dimensions of components of algebraic varieties in zero-characteristic”, J. Pure Appl. Algebra, 117–118 (1997), 145–175 | DOI | MR | Zbl
[16] A. Chistov, H. Fournier, L. Gurvits, P. Koiran, “Vandermonde matrices, NP-completeness, and transversal subspaces”, Found. Comput. Math., 3:4 (2003), 421–427 | DOI | MR | Zbl
[17] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Springer-Verlag, Berlin–Heidelberg–New York, 1987 | MR | Zbl
[18] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl
[19] C. Jordan, Traité des substitutions et des équations algébriques, Paris, 1870, 277–279
[20] O. Zariski, “Pencils on an algebraic variety and a new proof of a theorem of Bertini”, Trans. Amer. Math. Soc., 50 (1941), 48–70 | DOI | MR | Zbl