@article{ZNSL_2013_411_a0,
author = {L. Brasco and M. Petrache},
title = {A continuous model of transportation revisited},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--37},
year = {2013},
volume = {411},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a0/}
}
L. Brasco; M. Petrache. A continuous model of transportation revisited. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 5-37. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a0/
[1] L. Ambrosio, B. Kirchheim, “Currents in metric spaces”, Acta Math., 185 (2000), 1–80 | DOI | MR | Zbl
[2] M. J. Beckmann, “A continuous model of transportation”, Econometrica, 20 (1952), 643–660 | DOI | MR | Zbl
[3] F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, “Numerical approximation of continuous traffic congestion equilibria”, Netw. Heterog. Media, 4 (2009), 605–623 | DOI | MR | Zbl
[4] M. Bernot, V. Caselles, J.-M. Morel, Optimal transportation networks. Models and theory, Lecture Notes in Math., 1955, Springer-Verlag, Berlin, 2009 | MR | Zbl
[5] G. Bouchitté, G. Buttazzo, “Characterization of optimal shapes and masses through Monge–Kantorovich equation”, J. Eur. Math. Soc., 3 (2001), 139–168 | DOI | MR | Zbl
[6] G. Bouchitté, G. Buttazzo, L. De Pascale, “The Monge–Kantorovich problem for distributions and applications”, J. Convex Anal., 17 (2010), 925–943 | MR | Zbl
[7] G. Bouchitté, T. Champion, C. Jimenez, “Completion of the space of measures in the Kantorovich norm”, Riv. Mat. Univ. Parma, 4 (2005), 127–139 | MR | Zbl
[8] L. Brasco, G. Carlier, “Congested traffic equilibria and degenerate anisotropic PDEs”, Dyn Games Appl., 2013 (to appear); available at http://cvgmt.sns.it/paper/1993/
[9] L. Brasco, G. Carlier, On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds, Preprint available at , 2012 http://cvgmt.sns.it/paper/1890/
[10] L. Brasco, G. Carlier, F. Santambrogio, “Congested traffic dynamics, weak flows and very degenerate elliptic equations”, J. Math. Pures Appl., 93 (2010), 652–671 | DOI | MR | Zbl
[11] H. Brezis, J. M. Coron, E. Lieb, “Harmonic maps with defects”, Commun. Math. Phys., 107 (1986), 649–705 | DOI | MR | Zbl
[12] G. Carlier, C. Jimenez, F. Santambrogio, “Optimal transportation with traffic congestion and Wardrop equilibria”, SIAM J. Control Optim., 47 (2008), 1330–1350 | DOI | MR | Zbl
[13] B. Dacorogna, J. Moser, “On a partial differential equation involving the Jacobian determinant”, Annales del' I. H. P. Anal. non linéaire, 7 (1990), 1–26 | MR | Zbl
[14] C. Dellacherie, P.-A. Meyer, Probabilities and potentials, North-Holland Mathematics Studies, 29, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR | Zbl
[15] L. De Pascale, A. Pratelli, “Regularity properties for Monge transport density and for solutions of some shape optimization problems”, Calc. Var. Partial Differential Equations, 14 (2002), 249–274 | DOI | MR | Zbl
[16] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl
[17] I. Ekeland, Convexity methods in Hamiltonian mechanics, Springer-Verlag, 1990 | MR | Zbl
[18] L. C. Evans, W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, no. 653, 1999 | MR
[19] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, 1969 | MR | Zbl
[20] M. Feldman, R. McCann, “Uniqueness and transport density in Monges's mass transportation problem”, Calc. Var. Partial Differential Equations, 15 (2004), 81–113 | DOI | MR
[21] M. Giaquinta, G. Modica, J. Souček, Cartesian currents in the calculus of variations, v. I, Modern Surveys in Mathematics, 37, Springer-Verlag, 1998 | MR | Zbl
[22] L. Hanin, “Duality for general Lipschitz classes and applications”, Proc. London Math. Soc., 75 (1997), 134–156 | DOI | MR | Zbl
[23] R. Hardt, T. Rivière, “Connecting topological Hopf singularities”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2003), 287–344 | MR | Zbl
[24] L. Kantorovich, “On the translocation of masses”, Dokl. Akad. Nauk. SSSR, 37 (1942), 227–229
[25] J. Maly, Non-absolutely convergent integrals with respect to distributions, Preprint MATH-KMA-2011/374 , 2011 http://msekce.karlin.mff.cuni.cz/ms-preprints/kma-preprints/
[26] J. Moser, “On the volume elements on a manifold”, Trans. Am. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl
[27] E. Paolini, E. Stepanov, “Decomposition of acyclic normal currents in a metric space”, J. Funct. Anal., 263 (2012), 3358–3390 | DOI | MR | Zbl
[28] E. Paolini, E. Stepanov, “Structure of metric cycles and normal one-dimensional currents”, J. Funct. Anal., 264 (2013), 1269–1295 | DOI | MR | Zbl
[29] E. Paolini, E. Stepanov, “Optimal transportation networks as flat chains”, Interfaces Free Bound., 8 (2006), 393–436 | DOI | MR | Zbl
[30] M. Petrache, Notes on a slice distance for singular $L^p$-bundles, Preprint, available at , 2012 http://cvgmt.sns.it/paper/1752/
[31] M. Petrache, Interior partial regularity for minimal $L^p$-vectorfields with integer fluxes, Preprint, available at , 2012 http://cvgmt.sns.it/paper/1751/
[32] M. Petrache, T. Rivière, “Weak closure of singular abelian $L^p$-bundles in 3 dimensions”, Geom. Funct. Anal., 21 (2011), 1419–1442 | DOI | MR | Zbl
[33] A. C. Ponce, “On the distributions of the form $\sum_i\delta_{p_i}-\delta_{n_i}$”, J. Funct. Anal., 210 (2004), 391–435 | DOI | MR | Zbl
[34] T. Rivière, “Lines vortices in the $U(1)$-Higgs model”, ESAIM Control Optim. Calc. Var., 1 (1996), 77–167 | DOI | MR | Zbl
[35] E. Sandier, “Ginzburg-Landau minimizers from $\mathbb R^{n+1}$ to $\mathbb R^n$ and minimal connections”, Indiana Univ. Math. J., 50 (2001), 1807–1844 | DOI | MR | Zbl
[36] S. K. Smirnov, “Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents”, St.-Petersburg Math. J., 5:4 (1994), 841–867 | MR | Zbl
[37] G. Strang, “$L^1$ and $L^\infty$ approximation of vector fields in the plane”, Lecture Notes in Num. Appl. Anal., 5, 1982, 273–288 | MR
[38] T. Valkonen, “Optimal transportation networks and stations”, Interfaces Free Bound., 11 (2009), 569–597 | DOI | MR | Zbl
[39] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[40] J. G. Wardrop, “Some theoretical aspects of road traffic research”, Proc. Inst. Civ. Eng., 2 (1952), 325–378