A continuous model of transportation revisited
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 5-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We review two models of optimal transport, where congestion effects during the transport can be possibly taken into account. The first model is Beckmann's one, where the transport activities are modeled by vector fields with given divergence. The second one is the model by Carlier et al. (SIAM J. Control Optim 47: 1330–1350, 2008), which in turn is the continuous reformulation of Wardrop's model on graphs. We discuss the extensions of these models to their natural functional analytic setting and show that they are indeed equivalent, by using Smirnov decomposition theorem for normal $1$-currents.
@article{ZNSL_2013_411_a0,
     author = {L. Brasco and M. Petrache},
     title = {A continuous model of transportation revisited},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--37},
     year = {2013},
     volume = {411},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a0/}
}
TY  - JOUR
AU  - L. Brasco
AU  - M. Petrache
TI  - A continuous model of transportation revisited
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 5
EP  - 37
VL  - 411
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a0/
LA  - en
ID  - ZNSL_2013_411_a0
ER  - 
%0 Journal Article
%A L. Brasco
%A M. Petrache
%T A continuous model of transportation revisited
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 5-37
%V 411
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a0/
%G en
%F ZNSL_2013_411_a0
L. Brasco; M. Petrache. A continuous model of transportation revisited. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXII, Tome 411 (2013), pp. 5-37. http://geodesic.mathdoc.fr/item/ZNSL_2013_411_a0/

[1] L. Ambrosio, B. Kirchheim, “Currents in metric spaces”, Acta Math., 185 (2000), 1–80 | DOI | MR | Zbl

[2] M. J. Beckmann, “A continuous model of transportation”, Econometrica, 20 (1952), 643–660 | DOI | MR | Zbl

[3] F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, “Numerical approximation of continuous traffic congestion equilibria”, Netw. Heterog. Media, 4 (2009), 605–623 | DOI | MR | Zbl

[4] M. Bernot, V. Caselles, J.-M. Morel, Optimal transportation networks. Models and theory, Lecture Notes in Math., 1955, Springer-Verlag, Berlin, 2009 | MR | Zbl

[5] G. Bouchitté, G. Buttazzo, “Characterization of optimal shapes and masses through Monge–Kantorovich equation”, J. Eur. Math. Soc., 3 (2001), 139–168 | DOI | MR | Zbl

[6] G. Bouchitté, G. Buttazzo, L. De Pascale, “The Monge–Kantorovich problem for distributions and applications”, J. Convex Anal., 17 (2010), 925–943 | MR | Zbl

[7] G. Bouchitté, T. Champion, C. Jimenez, “Completion of the space of measures in the Kantorovich norm”, Riv. Mat. Univ. Parma, 4 (2005), 127–139 | MR | Zbl

[8] L. Brasco, G. Carlier, “Congested traffic equilibria and degenerate anisotropic PDEs”, Dyn Games Appl., 2013 (to appear); available at http://cvgmt.sns.it/paper/1993/

[9] L. Brasco, G. Carlier, On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds, Preprint available at , 2012 http://cvgmt.sns.it/paper/1890/

[10] L. Brasco, G. Carlier, F. Santambrogio, “Congested traffic dynamics, weak flows and very degenerate elliptic equations”, J. Math. Pures Appl., 93 (2010), 652–671 | DOI | MR | Zbl

[11] H. Brezis, J. M. Coron, E. Lieb, “Harmonic maps with defects”, Commun. Math. Phys., 107 (1986), 649–705 | DOI | MR | Zbl

[12] G. Carlier, C. Jimenez, F. Santambrogio, “Optimal transportation with traffic congestion and Wardrop equilibria”, SIAM J. Control Optim., 47 (2008), 1330–1350 | DOI | MR | Zbl

[13] B. Dacorogna, J. Moser, “On a partial differential equation involving the Jacobian determinant”, Annales del' I. H. P. Anal. non linéaire, 7 (1990), 1–26 | MR | Zbl

[14] C. Dellacherie, P.-A. Meyer, Probabilities and potentials, North-Holland Mathematics Studies, 29, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR | Zbl

[15] L. De Pascale, A. Pratelli, “Regularity properties for Monge transport density and for solutions of some shape optimization problems”, Calc. Var. Partial Differential Equations, 14 (2002), 249–274 | DOI | MR | Zbl

[16] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl

[17] I. Ekeland, Convexity methods in Hamiltonian mechanics, Springer-Verlag, 1990 | MR | Zbl

[18] L. C. Evans, W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, no. 653, 1999 | MR

[19] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, 1969 | MR | Zbl

[20] M. Feldman, R. McCann, “Uniqueness and transport density in Monges's mass transportation problem”, Calc. Var. Partial Differential Equations, 15 (2004), 81–113 | DOI | MR

[21] M. Giaquinta, G. Modica, J. Souček, Cartesian currents in the calculus of variations, v. I, Modern Surveys in Mathematics, 37, Springer-Verlag, 1998 | MR | Zbl

[22] L. Hanin, “Duality for general Lipschitz classes and applications”, Proc. London Math. Soc., 75 (1997), 134–156 | DOI | MR | Zbl

[23] R. Hardt, T. Rivière, “Connecting topological Hopf singularities”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2003), 287–344 | MR | Zbl

[24] L. Kantorovich, “On the translocation of masses”, Dokl. Akad. Nauk. SSSR, 37 (1942), 227–229

[25] J. Maly, Non-absolutely convergent integrals with respect to distributions, Preprint MATH-KMA-2011/374 , 2011 http://msekce.karlin.mff.cuni.cz/ms-preprints/kma-preprints/

[26] J. Moser, “On the volume elements on a manifold”, Trans. Am. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl

[27] E. Paolini, E. Stepanov, “Decomposition of acyclic normal currents in a metric space”, J. Funct. Anal., 263 (2012), 3358–3390 | DOI | MR | Zbl

[28] E. Paolini, E. Stepanov, “Structure of metric cycles and normal one-dimensional currents”, J. Funct. Anal., 264 (2013), 1269–1295 | DOI | MR | Zbl

[29] E. Paolini, E. Stepanov, “Optimal transportation networks as flat chains”, Interfaces Free Bound., 8 (2006), 393–436 | DOI | MR | Zbl

[30] M. Petrache, Notes on a slice distance for singular $L^p$-bundles, Preprint, available at , 2012 http://cvgmt.sns.it/paper/1752/

[31] M. Petrache, Interior partial regularity for minimal $L^p$-vectorfields with integer fluxes, Preprint, available at , 2012 http://cvgmt.sns.it/paper/1751/

[32] M. Petrache, T. Rivière, “Weak closure of singular abelian $L^p$-bundles in 3 dimensions”, Geom. Funct. Anal., 21 (2011), 1419–1442 | DOI | MR | Zbl

[33] A. C. Ponce, “On the distributions of the form $\sum_i\delta_{p_i}-\delta_{n_i}$”, J. Funct. Anal., 210 (2004), 391–435 | DOI | MR | Zbl

[34] T. Rivière, “Lines vortices in the $U(1)$-Higgs model”, ESAIM Control Optim. Calc. Var., 1 (1996), 77–167 | DOI | MR | Zbl

[35] E. Sandier, “Ginzburg-Landau minimizers from $\mathbb R^{n+1}$ to $\mathbb R^n$ and minimal connections”, Indiana Univ. Math. J., 50 (2001), 1807–1844 | DOI | MR | Zbl

[36] S. K. Smirnov, “Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents”, St.-Petersburg Math. J., 5:4 (1994), 841–867 | MR | Zbl

[37] G. Strang, “$L^1$ and $L^\infty$ approximation of vector fields in the plane”, Lecture Notes in Num. Appl. Anal., 5, 1982, 273–288 | MR

[38] T. Valkonen, “Optimal transportation networks and stations”, Interfaces Free Bound., 11 (2009), 569–597 | DOI | MR | Zbl

[39] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[40] J. G. Wardrop, “Some theoretical aspects of road traffic research”, Proc. Inst. Civ. Eng., 2 (1952), 325–378