@article{ZNSL_2013_410_a6,
author = {N. Filonov},
title = {On the regularity of solutions to the equation $-\Delta u+b\cdot\nabla u=0$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {168--186},
year = {2013},
volume = {410},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a6/}
}
N. Filonov. On the regularity of solutions to the equation $-\Delta u+b\cdot\nabla u=0$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 168-186. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a6/
[1] R. Coifman, P. L. Lions, Y. Meyer, S. Semmes, “Compensated compactness and Hardy spaces”, J. Math. Pures Appl., 72:3 (1993), 247–286 | MR | Zbl
[2] L. C. Evans, Partial Differential Equations, AMS, Providence, Rhode Island, 1998 | MR | Zbl
[3] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983 | MR | Zbl
[4] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordfoff Ltd., Groningen, 1961 | MR
[5] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, M., 1973 | MR
[6] V. G. Mazja, I. E. Verbitsky, “Form boundedness of the general second-order differential operator”, Comm. Pure Appl. Math., 59 (2006), 1286–1329 | DOI | MR
[7] A. I. Nazarov, N. N. Ural'tseva, “The Harnack inequality and related properties for solutions to elliptic and parabolic equations with divergence-free lower-order coefficients”, Algebra Analiz, 23:1 (2011), 136–168 | MR
[8] G. Seregin, L. Silvestre, V. Šverák, A. Zlatoš, “On divergence-free drifts”, J. Different. Equat., 252 (2012), 505–540 | DOI | MR | Zbl
[9] L. Silvestre, V. Vicol, A. Zlatoš, “On the loss of continuity for super-critical drift-diffusion equations”, Arch. Rat. Mech. Anal. (to appear) | MR
[10] G. Stampacchia, “Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Ann. Inst. Fourier (Grenoble), 15:1 (1965), 189–258 | DOI | MR | Zbl
[11] E. M. Stein, Harmonic Analysis, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl