On the regularity of solutions to the equation $-\Delta u+b\cdot\nabla u=0$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 168-186

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation $-\Delta u+b\cdot\nabla u=0$ is considered. The dependence of the local regularity of a solution $u$ on the properties of the coefficient $b$ is investigated.
@article{ZNSL_2013_410_a6,
     author = {N. Filonov},
     title = {On the regularity of solutions to the equation $-\Delta u+b\cdot\nabla u=0$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--186},
     publisher = {mathdoc},
     volume = {410},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a6/}
}
TY  - JOUR
AU  - N. Filonov
TI  - On the regularity of solutions to the equation $-\Delta u+b\cdot\nabla u=0$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 168
EP  - 186
VL  - 410
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a6/
LA  - en
ID  - ZNSL_2013_410_a6
ER  - 
%0 Journal Article
%A N. Filonov
%T On the regularity of solutions to the equation $-\Delta u+b\cdot\nabla u=0$
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 168-186
%V 410
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a6/
%G en
%F ZNSL_2013_410_a6
N. Filonov. On the regularity of solutions to the equation $-\Delta u+b\cdot\nabla u=0$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 168-186. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a6/