Solvability of a free boundary problem of magnetohydrodynamics in an infinite time interval
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 131-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove global in time solvability of a free boundary problem governing the motion of a finite isolated mass of a viscous incompressible electrically conducting capillary liquid in vacuum, under the smallness assumptions on initial data. We assume that initial position of a free boundary is close to a sphere. We show that if $t\to\infty$, then the solution tends to zero exponentially and the free boundary tends to a sphere of the same radius, but, in general, the sphere may have a different center. The solution is obtained in Sobolev–Slobodetskii spaces $W_2^{2+l,1+l/2}$, $1/2.
@article{ZNSL_2013_410_a5,
     author = {V. A. Solonnikov and E. V. Frolova},
     title = {Solvability of a~free boundary problem of magnetohydrodynamics in an infinite time interval},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--167},
     year = {2013},
     volume = {410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a5/}
}
TY  - JOUR
AU  - V. A. Solonnikov
AU  - E. V. Frolova
TI  - Solvability of a free boundary problem of magnetohydrodynamics in an infinite time interval
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 131
EP  - 167
VL  - 410
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a5/
LA  - en
ID  - ZNSL_2013_410_a5
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%A E. V. Frolova
%T Solvability of a free boundary problem of magnetohydrodynamics in an infinite time interval
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 131-167
%V 410
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a5/
%G en
%F ZNSL_2013_410_a5
V. A. Solonnikov; E. V. Frolova. Solvability of a free boundary problem of magnetohydrodynamics in an infinite time interval. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 131-167. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a5/

[1] M. Padula, V. A. Solonnikov, “On the free boundary problem of magnethydrodynamics”, Zap. Nauchn. Semin. POMI, 385, 2010, 135–186 | MR

[2] V. A. Solonnikov, “On the linear problem arising in the study of a free boundary problem for the Navier–Stokes equations”, Algebra Analiz, 22:6 (2010), 235–269 | MR

[3] O. A. Ladyzhenskaya, N. N. Uraltseva, V. A. Solonnikov, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967

[4] V. A. Solonnikov, “On an unsteady flow of a finite mass of a liquid bounded by a free surface”, Zap. Nauchn. Semin. POMI, 152, 1986, 137–157 | MR | Zbl

[5] V. A. Solonnikov, “On an unsteady motion of a finite isolated mass of self-gravitating fluid”, Algebra Analiz, 1:1 (1989), 207–249 | MR | Zbl

[6] M. Padula, V. A. Solonnikov, “On the stability of equlilbrium figures of a uniformly rotating liquid drop in $n$-dimentional space”, RIMS Kokyuroku Bessatsu, B1 (2007), 287–304 | MR | Zbl

[7] M. Padula, “On the exponential stability of the rest state of a viscous compressible fluid”, J. Math. Fluid Mech., 1 (1999), 62–77 | DOI | MR | Zbl

[8] V. A. Solonnikov, On the stability of uniformly rotating viscous incompressible self-gravitating fluid, Beijing, April 2009

[9] V. A. Solonnikov, “On the stability of uniformly rotating liquid in a weak magnetic field”, Probl. Mat. Anal., 57 (2011), 165–191 | MR | Zbl

[10] M. Padula, V. A. Solonnikov, “On the local solvability of free boundary problem for the Navier–Stokes equations”, Probl. Mat. Anal., 50 (2010), 87–133 | MR

[11] O. A. Ladyzhenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds for problems of magnetohydrodynamics”, J. Math. Sci., 8 (1977), 384–422 | DOI | Zbl

[12] S. Mosconi, V. A. Solonnikov, “On a problem of magnetohydrodinamics in a multi-connected domain”, Nonlinear Analysis, 74:2 (2010), 462–478 | DOI | MR

[13] E. V. Frolova, “Solvability of a free boundary problem for the Navier–Stokes equations describing the motion of viscous incompressible nonhomogeneous fluid”, Progress Nonlinear Diff. Eqs. Appl., 61, Birkhauser, 2005, 109–124 | MR | Zbl

[14] O. A. Ladyzhenskaya, V. A. Solonnikov, “Solution of some nonstationary problems of magnetohydrodynamics for a viscous incompressible fluid”, Trudy Mat. Inst. Steklov, 59, 1960, 115–173 | MR