Solvability of a~free boundary problem of magnetohydrodynamics in an infinite time interval
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 131-167
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove global in time solvability of a free boundary problem governing the motion of a finite isolated mass of a viscous incompressible electrically conducting capillary liquid in vacuum, under the smallness assumptions on initial data. We assume that initial position of a free boundary is close to a sphere. We show that if $t\to\infty$, then the solution tends to zero exponentially and the free boundary tends to a sphere of the same radius, but, in general, the sphere may have a different center. The solution is obtained in Sobolev–Slobodetskii spaces $W_2^{2+l,1+l/2}$, $1/2$.
@article{ZNSL_2013_410_a5,
author = {V. A. Solonnikov and E. V. Frolova},
title = {Solvability of a~free boundary problem of magnetohydrodynamics in an infinite time interval},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {131--167},
publisher = {mathdoc},
volume = {410},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a5/}
}
TY - JOUR AU - V. A. Solonnikov AU - E. V. Frolova TI - Solvability of a~free boundary problem of magnetohydrodynamics in an infinite time interval JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 131 EP - 167 VL - 410 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a5/ LA - en ID - ZNSL_2013_410_a5 ER -
%0 Journal Article %A V. A. Solonnikov %A E. V. Frolova %T Solvability of a~free boundary problem of magnetohydrodynamics in an infinite time interval %J Zapiski Nauchnykh Seminarov POMI %D 2013 %P 131-167 %V 410 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a5/ %G en %F ZNSL_2013_410_a5
V. A. Solonnikov; E. V. Frolova. Solvability of a~free boundary problem of magnetohydrodynamics in an infinite time interval. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 131-167. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a5/