@article{ZNSL_2013_410_a4,
author = {S. Repin},
title = {Estimates of deviations from exact solution of the generalized {Oseen} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {110--130},
year = {2013},
volume = {410},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a4/}
}
S. Repin. Estimates of deviations from exact solution of the generalized Oseen problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 110-130. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a4/
[1] I. Babuška, “The finite element method with Lagrangian multipliers”, Numer. Math., 20 (1973), 179–192 | DOI | MR | Zbl
[2] I. Babuška, A. K. Aziz, Surway lectures on the mathematical foundations of the finite element method, The mathematical formulations of the finite element method with applications to partial differential equations, Academic Press, New York, 1972 | MR
[3] L. Badea, M. Discacciati, A. Quarteroni, “Numerical analysis of the Navier–Stokes/Darcy coupling”, Numerische Mathematik, 115 (2010), 195–227 | DOI | MR | Zbl
[4] J. Bramble, “A proof of the inf-sup condition for the Stokes equations on Lipschitz domains”, Math. Models Methods Appl. Sci., 13:3 (2003), 361–371 | DOI | MR | Zbl
[5] J. Bonvin, M. Picasso, R. Stenberg, “GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows”, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3893–3914 | DOI | MR | Zbl
[6] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers”, R.A.I.R.O. Annal. Numer., R2 (1974), 129–151 | MR | Zbl
[7] M. Dobrowolski, “On the LBB constant on stretched domains”, Math. Nachr., 254–255 (2003), 64–67 | DOI | MR | Zbl
[8] R. Finn, D. R. Smith, “On the linearized hydrodynamical equations in two dimensions”, Arch. Rational Mech. Anal., 25 (1967), 1–25 | DOI | MR | Zbl
[9] M. Fuchs, S. Repin, “Estimates for the deviation from the exact solutions of variational problems modeling certain classes of generalized Newtonian fluids”, Math. Methods Applied Sciences (M2AS), 29 (2006), 2225–2244 | DOI | MR | Zbl
[10] V. Girault, P. A. Raviart, Finite element approximation of the Navier–Stokes equations, Springer, Berlin, 1986 | MR | Zbl
[11] J. G. Heywood, W. Nagata, W. Xie, “A numerically based existence theorem for the Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 5–23 | DOI | MR | Zbl
[12] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Fluid, Nauka, M., 1970
[13] O. A. Ladyzenskaja, V. A. Solonnikov, “Some problems of vector analysis, and generalized formulations of boundary value problems for the Navier–Stokes equation”, Zap. Nauchn, Semin. LOMI, 59, 1976, 81–116 | MR | Zbl
[14] A. Mikhailov, S. Repin, “Estimates of deviations from exact solution of the Stokes problem in the velocity-vorticity-pressure formulation”, Zap. Nauchn. Semin. POMI, 397, 2011, 73–88
[15] M. A. Olshanskii, E. V. Chizhonkov, “On the best constant in the $inf\,sup$ condition for prolonged rectangular domains”, Mat. Zametki, 67:3 (2000), 387–396 | DOI | MR | Zbl
[16] F. K. G. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Velagsgesellschaft, Leipzig, 1927 | Zbl
[17] L. E. Payne, “A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov”, IMA J. Appl. Math., 72 (2007), 563–569 | DOI | MR | Zbl
[18] R. Rannacher, “Finite element methods for the incompressible Navier-Stokes equations”, Fundamental directions in mathematical fluid mechanics, ed. G. P. Galdi, Birkhauser, Basel, 2000, 191–293 | DOI | MR | Zbl
[19] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69:230 (2000), 481–500 | DOI | MR | Zbl
[20] S. Repin, “Estimates of deviations from exact solutions for some boundary-value problems with incompressibility condition”, Algebra Analiz, 16:5 (2004), 124–161 | MR | Zbl
[21] S. I. Repin, “Aposteriori estimates for the Stokes problem”, J. Math. Sci., 109:5 (2002), 1950–1964 | DOI | MR
[22] S. Repin, A posteriori estimates for partial differential equations, Walter de Gruyter, Berlin, 2008 | MR
[23] V. A. Solonnikov, “Estimates for solutions of a non-stationary linearized system of Navier–Stokes equations”, Trudy Mat. Inst. Steklov, 70, 1964, 213–317 | MR | Zbl