@article{ZNSL_2013_410_a2,
author = {S. J. N. Mosconi and V. A. Solonnikov},
title = {The linearization principle for a~free boundary problem for viscous, capillary incompressible fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {36--103},
year = {2013},
volume = {410},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/}
}
TY - JOUR AU - S. J. N. Mosconi AU - V. A. Solonnikov TI - The linearization principle for a free boundary problem for viscous, capillary incompressible fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 36 EP - 103 VL - 410 UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/ LA - en ID - ZNSL_2013_410_a2 ER -
%0 Journal Article %A S. J. N. Mosconi %A V. A. Solonnikov %T The linearization principle for a free boundary problem for viscous, capillary incompressible fluids %J Zapiski Nauchnykh Seminarov POMI %D 2013 %P 36-103 %V 410 %U http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/ %G en %F ZNSL_2013_410_a2
S. J. N. Mosconi; V. A. Solonnikov. The linearization principle for a free boundary problem for viscous, capillary incompressible fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 36-103. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/
[1] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Uspekhi Mat. Nauk, 19:3 (1964), 53–161 | MR | Zbl
[2] J. T. Beale, “The initial value problem for the Navier–Stokes equations with a free boundary”, Comm. Pure Appl. Math., 31 (1980), 359–392 | MR
[3] J. T. Beale, “Large-time regularity of viscous surface waves”, Arch. Rat. Mech. Anal., 84 (1984), 307–352 | DOI | MR | Zbl
[4] J. T. Beale, T. Nishida, “Large-time behaviour of viscous surface waves”, Lect. Notes Num. Appl. Anal., 8, 1985, 1–14 | MR | Zbl
[5] M. E. Bogovskii, “Resolution of some problems of the vector analysis connected with the operators $\mathrm{div}$ and $\mathrm{grad}$”, Trudy Semin. S. L. Sobolev, 1, 1980, 5–40 | MR
[6] O. A. Ladyzenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds for problems in magneto-hydrodynamics”, J. Math. Sci., 8 (1977), 384–422 | DOI
[7] T. Nishida, Y. Teramoto, H. Yoshihara, “Global in time behaviour of viscous surface waves: horizontally periodic motion”, J. Math. Kyoto Univ., 44 (2004), 271–323 | MR | Zbl
[8] M. Padula, V. A. Solonnikov, “On Rayleigh–Taylor stability”, Ann. Univ. Ferrara, Sez VIII sc. Mat., 46 (2000), 307–336 | MR | Zbl
[9] V. A. Solonnikov, “On the stability of uniformly rotating viscous incompressible self-gravitating liquid”, Zap. Nauchn. Semin. POMI, 348, 2007, 165–208
[10] V. A. Solonnikov, “On the stability of uniformly rotating viscous incompressible self-gravitating liquid”, J. Math. Sci., 152:5 (2008), 4343–4370 | MR
[11] V. A. Solonnikov, “On the linear problem arising in the study of a free boundary problem for the Navier–Stokes equation”, Algebra Analiz, 22:6 (2010), 235–269 | MR
[12] D. Sylvester, “Large time existence of small viscous surface waves without surface tension”, Comm. Partial Diff. Eqs., 15 (1990), 823–903 | DOI | MR | Zbl
[13] N. Tanaka, A. Tani, “Large-time existence of surface waves in incompressible viscous fluid with or without surface tension”, Arch. Rat. Mech. Anal., 130 (1995), 303–314 | DOI | MR | Zbl
[14] A. Tani, “Small-time existence for the three-dimensional incompressible Navier–Stokes equations with a free surface”, Arch. Rat. Mech. Anal., 133 (1996), 299–331 | DOI | MR | Zbl
[15] Y. Teramoto, “On the Navier–Stokes flow down an inclined plane”, J. Math. Kyoto Univ., 32 (1992), 593–619 | MR | Zbl
[16] Y. Teramoto, “The initial value problem for a viscous incompressible flow down an inclined plane”, Hiroshima Math. J., 15 (1985), 619–643 | MR | Zbl