The linearization principle for a free boundary problem for viscous, capillary incompressible fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 36-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the free boundary problem associated to a viscous incompressible surface wave subjected to capillary force on the free upper surface and Dirchlet boundary condition on the fixed bottom surface. In the spatially periodic case, we prove a general linearization principle which gives, for sufficiently small perturbations from a linearly stable stationary solution, existence of a global solution of the associated system and exponential convergence of the latter to the stationary one. Convergence of the velocity, the pressure and the free boundary is proved in anisotropic Sobolev–Slobodetskii spaces, after a suitable change of variables is performed to formulate the problem in a fixed domain. We apply this linearization principle to the study of the rest state's stability in the case of general potential forces.
@article{ZNSL_2013_410_a2,
     author = {S. J. N. Mosconi and V. A. Solonnikov},
     title = {The linearization principle for a~free boundary problem for viscous, capillary incompressible fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--103},
     year = {2013},
     volume = {410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/}
}
TY  - JOUR
AU  - S. J. N. Mosconi
AU  - V. A. Solonnikov
TI  - The linearization principle for a free boundary problem for viscous, capillary incompressible fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 36
EP  - 103
VL  - 410
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/
LA  - en
ID  - ZNSL_2013_410_a2
ER  - 
%0 Journal Article
%A S. J. N. Mosconi
%A V. A. Solonnikov
%T The linearization principle for a free boundary problem for viscous, capillary incompressible fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 36-103
%V 410
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/
%G en
%F ZNSL_2013_410_a2
S. J. N. Mosconi; V. A. Solonnikov. The linearization principle for a free boundary problem for viscous, capillary incompressible fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 36-103. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/

[1] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Uspekhi Mat. Nauk, 19:3 (1964), 53–161 | MR | Zbl

[2] J. T. Beale, “The initial value problem for the Navier–Stokes equations with a free boundary”, Comm. Pure Appl. Math., 31 (1980), 359–392 | MR

[3] J. T. Beale, “Large-time regularity of viscous surface waves”, Arch. Rat. Mech. Anal., 84 (1984), 307–352 | DOI | MR | Zbl

[4] J. T. Beale, T. Nishida, “Large-time behaviour of viscous surface waves”, Lect. Notes Num. Appl. Anal., 8, 1985, 1–14 | MR | Zbl

[5] M. E. Bogovskii, “Resolution of some problems of the vector analysis connected with the operators $\mathrm{div}$ and $\mathrm{grad}$”, Trudy Semin. S. L. Sobolev, 1, 1980, 5–40 | MR

[6] O. A. Ladyzenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds for problems in magneto-hydrodynamics”, J. Math. Sci., 8 (1977), 384–422 | DOI

[7] T. Nishida, Y. Teramoto, H. Yoshihara, “Global in time behaviour of viscous surface waves: horizontally periodic motion”, J. Math. Kyoto Univ., 44 (2004), 271–323 | MR | Zbl

[8] M. Padula, V. A. Solonnikov, “On Rayleigh–Taylor stability”, Ann. Univ. Ferrara, Sez VIII sc. Mat., 46 (2000), 307–336 | MR | Zbl

[9] V. A. Solonnikov, “On the stability of uniformly rotating viscous incompressible self-gravitating liquid”, Zap. Nauchn. Semin. POMI, 348, 2007, 165–208

[10] V. A. Solonnikov, “On the stability of uniformly rotating viscous incompressible self-gravitating liquid”, J. Math. Sci., 152:5 (2008), 4343–4370 | MR

[11] V. A. Solonnikov, “On the linear problem arising in the study of a free boundary problem for the Navier–Stokes equation”, Algebra Analiz, 22:6 (2010), 235–269 | MR

[12] D. Sylvester, “Large time existence of small viscous surface waves without surface tension”, Comm. Partial Diff. Eqs., 15 (1990), 823–903 | DOI | MR | Zbl

[13] N. Tanaka, A. Tani, “Large-time existence of surface waves in incompressible viscous fluid with or without surface tension”, Arch. Rat. Mech. Anal., 130 (1995), 303–314 | DOI | MR | Zbl

[14] A. Tani, “Small-time existence for the three-dimensional incompressible Navier–Stokes equations with a free surface”, Arch. Rat. Mech. Anal., 133 (1996), 299–331 | DOI | MR | Zbl

[15] Y. Teramoto, “On the Navier–Stokes flow down an inclined plane”, J. Math. Kyoto Univ., 32 (1992), 593–619 | MR | Zbl

[16] Y. Teramoto, “The initial value problem for a viscous incompressible flow down an inclined plane”, Hiroshima Math. J., 15 (1985), 619–643 | MR | Zbl