The linearization principle for a~free boundary problem for viscous, capillary incompressible fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 36-103
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the free boundary problem associated to a viscous incompressible surface wave subjected to capillary force on the free upper surface and Dirchlet boundary condition on the fixed bottom surface. In the spatially periodic case, we prove a general linearization principle which gives, for sufficiently small perturbations from a linearly stable stationary solution, existence of a global solution of the associated system and exponential convergence of the latter to the stationary one. Convergence of the velocity, the pressure and the free boundary is proved in anisotropic Sobolev–Slobodetskii spaces, after a suitable change of variables is performed to formulate the problem in a fixed domain. We apply this linearization principle to the study of the rest state's stability in the case of general potential forces.
@article{ZNSL_2013_410_a2,
author = {S. J. N. Mosconi and V. A. Solonnikov},
title = {The linearization principle for a~free boundary problem for viscous, capillary incompressible fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {36--103},
publisher = {mathdoc},
volume = {410},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/}
}
TY - JOUR AU - S. J. N. Mosconi AU - V. A. Solonnikov TI - The linearization principle for a~free boundary problem for viscous, capillary incompressible fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 2013 SP - 36 EP - 103 VL - 410 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/ LA - en ID - ZNSL_2013_410_a2 ER -
%0 Journal Article %A S. J. N. Mosconi %A V. A. Solonnikov %T The linearization principle for a~free boundary problem for viscous, capillary incompressible fluids %J Zapiski Nauchnykh Seminarov POMI %D 2013 %P 36-103 %V 410 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/ %G en %F ZNSL_2013_410_a2
S. J. N. Mosconi; V. A. Solonnikov. The linearization principle for a~free boundary problem for viscous, capillary incompressible fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 36-103. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a2/