A Liouville theorem for the Stokes system in half-space
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 25-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note, we describe all non-trivial bounded ancient solutions to the Stokes system in half space with non-slip boundary conditions.
@article{ZNSL_2013_410_a1,
     author = {H. Jia and G. Seregin and V. Sverak},
     title = {A {Liouville} theorem for the {Stokes} system in half-space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--35},
     year = {2013},
     volume = {410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a1/}
}
TY  - JOUR
AU  - H. Jia
AU  - G. Seregin
AU  - V. Sverak
TI  - A Liouville theorem for the Stokes system in half-space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 25
EP  - 35
VL  - 410
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a1/
LA  - en
ID  - ZNSL_2013_410_a1
ER  - 
%0 Journal Article
%A H. Jia
%A G. Seregin
%A V. Sverak
%T A Liouville theorem for the Stokes system in half-space
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 25-35
%V 410
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a1/
%G en
%F ZNSL_2013_410_a1
H. Jia; G. Seregin; V. Sverak. A Liouville theorem for the Stokes system in half-space. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 25-35. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a1/

[1] M. E. Bogovskii, “Solution of the first boundary value problem for the equation of continuity of incompressible medium”, Soviet Math. Dokl., 20:5 (1979), 1094–1098 | MR

[2] H. Jia, G. Seregin, V. Sverak, Liouville theorems for unsteady Stokes equations (to appear)

[3] K. Kang, “Unbounded normal derivative for the Stokes system near boundary”, Math. Ann., 331 (2005), 87–109 | DOI | MR | Zbl

[4] G. Seregin, V. Sverak, “On a bounded shear flow in half-space”, Zap. Nauchn. Semin. POMI, 385, 2010, 200–205 | MR

[5] V. A. Solonnikov, “On nonstationary Stokes problem and Navier–Stokes problem in a half space with initial data nondecreasing at infinity”, J. Math. Sci., 114:5 (2003), 1726–1740 | DOI | MR | Zbl