Estimates of solutions to the perturbed Stokes system
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 5-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we derive local estimates of solutions to the Perturbed Stokes system, which arises as a reduction of the Stokes system near a curved part of the boundary of the domain if a diffeomorphism flatting the boundary is applied. The estimates obtained in the paper play the crucial role in the investigation of partial regularity of weak solutions to the Navier–Stokes system near a curved part of the boundary.
@article{ZNSL_2013_410_a0,
     author = {V. Vialov and T. Shilkin},
     title = {Estimates of solutions to the perturbed {Stokes} system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--24},
     year = {2013},
     volume = {410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a0/}
}
TY  - JOUR
AU  - V. Vialov
AU  - T. Shilkin
TI  - Estimates of solutions to the perturbed Stokes system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2013
SP  - 5
EP  - 24
VL  - 410
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a0/
LA  - en
ID  - ZNSL_2013_410_a0
ER  - 
%0 Journal Article
%A V. Vialov
%A T. Shilkin
%T Estimates of solutions to the perturbed Stokes system
%J Zapiski Nauchnykh Seminarov POMI
%D 2013
%P 5-24
%V 410
%U http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a0/
%G en
%F ZNSL_2013_410_a0
V. Vialov; T. Shilkin. Estimates of solutions to the perturbed Stokes system. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Tome 410 (2013), pp. 5-24. http://geodesic.mathdoc.fr/item/ZNSL_2013_410_a0/

[1] M. E. Bogovskii, “On solution of some problems of vectoral analysis related to $\operatorname{div}$ and $\operatorname{grad}$ operators”, Proc. S. L. Sobolev Seminar, 1, 1980, 5–40 | MR

[2] N. D. Filonov, T. N. Shilkin, “On the Stokes problem with non-zero divergence”, Zap. Nauchn. Semin. POMI, 370, 2009, 184–202

[3] G. A. Seregin, “Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl

[4] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundar”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[5] G. A. Seregin, “A note on local boundary regularity for the Stokes system”, Zap. Nauchn. Semin. POMI, 370, 2009, 151–159 | MR

[6] G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary partial regularity for the Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 310, 2004, 158–190 | MR | Zbl

[7] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl

[8] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Usp. Mat. Nauk, 58:2 (2003), 123–156 | DOI | MR | Zbl