Wave Wall for waves on the surface of a heavy liquid
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 151-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Asymptotic analysis of surface water waves is made. Gradient of the ocean depth is assumed small. The ansatz for the asymptotic expansion in this small parameter is suggested. The goal is to construct full asymptotic expansion for the solution localized near moving line on the liquid surface. The approach is based on space-time ray method. Eiconal and amplitudes are found in the forms of formal power series. Chains of recurrent equations for its terms are derived. Their solvability is proved. The first term is obtained in explicit form.
@article{ZNSL_2012_409_a9,
     author = {A. I. Popov},
     title = {Wave {Wall} for waves on the surface of a~heavy liquid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--175},
     year = {2012},
     volume = {409},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a9/}
}
TY  - JOUR
AU  - A. I. Popov
TI  - Wave Wall for waves on the surface of a heavy liquid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 151
EP  - 175
VL  - 409
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a9/
LA  - ru
ID  - ZNSL_2012_409_a9
ER  - 
%0 Journal Article
%A A. I. Popov
%T Wave Wall for waves on the surface of a heavy liquid
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 151-175
%V 409
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a9/
%G ru
%F ZNSL_2012_409_a9
A. I. Popov. Wave Wall for waves on the surface of a heavy liquid. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 151-175. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a9/

[1] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[2] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[3] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod: lineinye i nelineinye volny, Izd-vo LGU, L., 1985 | MR

[4] V. M. Babich, V. V. Ulin, “Kompleksnyi prostranstvenno-vremennoi luchevoi metod i kvazifotony”, Zap. nauchn. semin. LOMI, 117, 1981, 5–12 | MR | Zbl

[5] V. M. Babich, “Kvazifotony i prostranstvenno-vremennoi luchevoi metod”, Zap. nauchn. semin. POMI, 342, 2008, 5–13 | MR | Zbl

[6] V. M. Babich, A. I. Popov, “Kvazifotony voln na poverkhnosti tyazheloi zhidkosti”, Zap. nauchn. semin. POMI, 379, 2010, 5–23 | MR

[7] A. P. Kachalov, “Sistema koordinat pri opisanii kvazifotonov”, Zap. nauchn. semin. LOMI, 140, 1984, 73–76 | MR | Zbl

[8] S. Bokhner, U. T. Martin, Funktsii mnogikh kompleksnykh peremennykh, M., 1951

[9] V. M. Babich, A. I. Popov, “Asimptoticheskoe reshenie uravneniya Gamiltona–Yakobi, sosredotochennoe vblizi poverkhnosti”, Zap. nauchn. semin. POMI, 393, 2011, 23–28 | MR

[10] Matematicheskaya entsiklopediya, v. 4, “Sovetskaya entsiklopediya”, Nauka, M., 1984

[11] N. Ya. Kirpichnikova, “Volny na poverkhnosti tyazheloi zhidkosti s tochki zreniya prostranstvenno-vremennogo luchevogo metoda i ego modifikatsii (lineinaya teoriya)”, Zap. nauchn. semin. LOMI, 165, 1987, 91–101 | MR | Zbl