Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 130-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A waveguide is constructed such that the Dirichlet problem for the Laplace operator gets the essential spectrum implying a countable set of points in the real positive semi-axis. The waveguide is obtained by joining identical cells through apertures in their common walls. Size of the apertures decreases at distance from the “central” cell. It is shown that the first point of the essential spectrum is a limit of an infinite sequence of eigenvalues of the problem from its discrete spectrum. A hypothesis on the structure of the discrete spectrum inside spectral gaps is formulated and other open questions are mentioned.
@article{ZNSL_2012_409_a8,
     author = {S. A. Nazarov and J. Taskinen},
     title = {Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--150},
     year = {2012},
     volume = {409},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - J. Taskinen
TI  - Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 130
EP  - 150
VL  - 409
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/
LA  - ru
ID  - ZNSL_2012_409_a8
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A J. Taskinen
%T Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 130-150
%V 409
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/
%G ru
%F ZNSL_2012_409_a8
S. A. Nazarov; J. Taskinen. Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 130-150. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/

[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980 | MR

[2] S. A. Nazarov, “Lakuna v suschestvennom spektre zadachi Neimana dlya ellipticheskoi sistemy na periodicheskoi oblasti”, Funktsionalnyi analiz i ego prilozheniya, 43:3 (2009), 92–95 | DOI | MR | Zbl

[3] S. A. Nazarov, “Primer mnozhestvennosti lakun v spektre periodicheskogo volnovoda”, Matem. sbornik, 201:4 (2010), 99–124 | DOI | MR | Zbl

[4] S. A. Nazarov, K. Ruotsalainen, J. Taskinen, “Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps”, Applicable Anal., 89:1 (2010), 109–124 | DOI | MR | Zbl

[5] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[6] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 209–292 | MR | Zbl

[7] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[8] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl

[9] M. Sh. Birman, G. E. Skvortsov, “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izvestiya VUZ'ov. Matem., 1962, no. 5, 12–21 | MR | Zbl

[10] S. A. Nazarov, “Samosopryazhennye rasshireniya operatora zadachi Dirikhle v trekhmernoi oblasti s rebrom”, Sibirskii zhurnal industrialnoi matematiki, 11:1 (2008), 80–95 | MR | Zbl