Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 130-150
Voir la notice de l'article provenant de la source Math-Net.Ru
A waveguide is constructed such that the Dirichlet problem for the Laplace operator gets the essential spectrum implying a countable set of points in the real positive semi-axis. The waveguide is obtained by joining identical cells through apertures in their common walls. Size of the apertures decreases at distance from the “central” cell. It is shown that the first point of the essential spectrum is a limit of an infinite sequence of eigenvalues of the problem from its discrete spectrum. A hypothesis on the structure of the discrete spectrum inside spectral gaps is formulated and other open questions are mentioned.
@article{ZNSL_2012_409_a8,
author = {S. A. Nazarov and J. Taskinen},
title = {Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {130--150},
publisher = {mathdoc},
volume = {409},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/}
}
TY - JOUR AU - S. A. Nazarov AU - J. Taskinen TI - Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 130 EP - 150 VL - 409 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/ LA - ru ID - ZNSL_2012_409_a8 ER -
%0 Journal Article %A S. A. Nazarov %A J. Taskinen %T Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes %J Zapiski Nauchnykh Seminarov POMI %D 2012 %P 130-150 %V 409 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/ %G ru %F ZNSL_2012_409_a8
S. A. Nazarov; J. Taskinen. Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 130-150. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/