@article{ZNSL_2012_409_a8,
author = {S. A. Nazarov and J. Taskinen},
title = {Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {130--150},
year = {2012},
volume = {409},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/}
}
TY - JOUR AU - S. A. Nazarov AU - J. Taskinen TI - Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 130 EP - 150 VL - 409 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/ LA - ru ID - ZNSL_2012_409_a8 ER -
%0 Journal Article %A S. A. Nazarov %A J. Taskinen %T Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes %J Zapiski Nauchnykh Seminarov POMI %D 2012 %P 130-150 %V 409 %U http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/ %G ru %F ZNSL_2012_409_a8
S. A. Nazarov; J. Taskinen. Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 130-150. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a8/
[1] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980 | MR
[2] S. A. Nazarov, “Lakuna v suschestvennom spektre zadachi Neimana dlya ellipticheskoi sistemy na periodicheskoi oblasti”, Funktsionalnyi analiz i ego prilozheniya, 43:3 (2009), 92–95 | DOI | MR | Zbl
[3] S. A. Nazarov, “Primer mnozhestvennosti lakun v spektre periodicheskogo volnovoda”, Matem. sbornik, 201:4 (2010), 99–124 | DOI | MR | Zbl
[4] S. A. Nazarov, K. Ruotsalainen, J. Taskinen, “Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps”, Applicable Anal., 89:1 (2010), 109–124 | DOI | MR | Zbl
[5] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[6] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 209–292 | MR | Zbl
[7] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[8] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl
[9] M. Sh. Birman, G. E. Skvortsov, “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izvestiya VUZ'ov. Matem., 1962, no. 5, 12–21 | MR | Zbl
[10] S. A. Nazarov, “Samosopryazhennye rasshireniya operatora zadachi Dirikhle v trekhmernoi oblasti s rebrom”, Sibirskii zhurnal industrialnoi matematiki, 11:1 (2008), 80–95 | MR | Zbl