@article{ZNSL_2012_409_a7,
author = {A. S. Mikhaylov and V. S. Mikhaylov},
title = {Equations of the {Boundary} {Control} method for the inverse source problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--129},
year = {2012},
volume = {409},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a7/}
}
A. S. Mikhaylov; V. S. Mikhaylov. Equations of the Boundary Control method for the inverse source problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 121-129. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a7/
[1] C. Alves, A. L. Silvestre, T. Takahashi, M. Tucsnak, “Solving inverse source problems using observability. Applications to the Euler–Bernoulli plate equation”, SIAM J. Control Optim., 48:3 (2009), 1632–1659 | DOI | MR | Zbl
[2] S. A. Avdonin, A. S. Bulanova, “Boundary control approach to the spectral estimation problem. The case of multiple poles”, Math. Contr. Sign. Syst., 22:3 (2011), 245–265 | DOI | MR | Zbl
[3] S. A. Avdonin, A. S. Bulanova, D. Nicolsky, “Boundary control approach to the spectral estimation problem. The case of simple poles”, Sampling Theory in Signal and Image Processing, 8:3 (2009), 225–248 | MR | Zbl
[4] S. Avdonin, F. Gesztesy, K. A. Makarov, “Spectral estimation and inverse initial boundary value problems”, Inverse Probl. Imaging, 4:1 (2010), 1–9 | DOI | MR | Zbl
[5] S. Avdonin, S. Ivanov, Families of Exponentials, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[6] S. Avdonin, V. Mikhaylov, “The boundary control approach to inverse spectral theory”, Inverse Problems, 26:4 (2010), 045009, 19 pp. | DOI | MR | Zbl
[7] S. Avdonin, V. Mikhaylov, “Inverse source problem for the 1-D Schrödinger equation”, Zap. Nauchn. Semin. POMI, 393, 2011, 5–11 | MR
[8] S. Avdonin, V. Mikhaylov, K. Ramdani, Reconstructing the potential for the 1D Schrödinger equation from boundary measurements, submitted
[9] L. Baudouin, J.-P. Puel, “Uniqueness and stability in an inverse problem for the Schrödinger equation”, Inverse Problems, 18:6 (2002), 1537–1554 | DOI | MR | Zbl
[10] M. Bellassoued, M. Choulli, “Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation”, J. Math. Pures Appl., 91 (2009), 233–255 | DOI | MR | Zbl
[11] M. Belishev, “Dynamical systems with boundary control: models and characterization of inverse data”, Inverse Problems, 17:4 (2001), 659–682 | DOI | MR | Zbl
[12] M. Belishev, “On a relation between data of dynamic and spectral inverse problems”, Zap. Nauchn. Semin. POMI, 297, 2003, 30–48 | MR | Zbl
[13] M. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl
[14] A. Mercado, A. A. Osses, L. Rosier, “Carleman inequalities and inverse problems for the Schrödinger equation”, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 53–58 | DOI | MR | Zbl
[15] K. Ramdani, M. Tucsnak, G. Weiss, “Recovering the initial state of an infinite-dimensional system using observers”, Automatica, 46 (2010), 1616–1625 | DOI | MR | Zbl
[16] M. Tucsnak, G. Weiss, Observation and control for operator semigroups, Birkhaüser Advanced Texts, Basler Lehrbucher [Birkhaüser Advanced Texts, Basel Textbooks], Birkhaüser Verlag, Basel, 2009, xii+483 pp. | MR | Zbl
[17] M. Yamamoto, “Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method”, Inverse Problems, 11:2 (1995), 481–496 | DOI | MR | Zbl