Asymptotic models of the blood flow in arterias and veins
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 80-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Asymptotic analysis is applied for obtaining one-dimensional models of the blood flow in narrow, thin-walled, elastic vessels. The models for arteries and veins essentially distinguish from each other, and the reason for this is the structure of their walls as well as the operationing conditions. Although the obtained asymptotic models are simple, they explain various effects known in medical practice, in particular, describe the mechanism of vein-muscle pumping of blood.
@article{ZNSL_2012_409_a5,
     author = {V. A. Kozlov and S. A. Nazarov},
     title = {Asymptotic models of the blood flow in arterias and veins},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {80--106},
     year = {2012},
     volume = {409},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a5/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - S. A. Nazarov
TI  - Asymptotic models of the blood flow in arterias and veins
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 80
EP  - 106
VL  - 409
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a5/
LA  - ru
ID  - ZNSL_2012_409_a5
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A S. A. Nazarov
%T Asymptotic models of the blood flow in arterias and veins
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 80-106
%V 409
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a5/
%G ru
%F ZNSL_2012_409_a5
V. A. Kozlov; S. A. Nazarov. Asymptotic models of the blood flow in arterias and veins. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 80-106. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a5/

[1] W. J. Zwiebel, J. S. Pellerito, Introduction to Vascular Ultrasonography, 5th ed., Elsevier, Philadelphia, 2005

[2] Y. C. Fung, Biomechanics. Circulation, 2nd ed., Springer, New York–Berlin, 2011

[3] S. A. Nazarov, “Asimptotika resheniya zadachi Nave–Stoksa o techenii tonkogo sloya zhidkosti”, Sib. matem. zh., 31:2 (1990), 131–144 | Zbl

[4] S. A. Nazarov, K. I. Piletskas, “Reinoldsovo techenie zhidkosti v tonkom trekhmernom kanale”, Litovskii matem. sb., 30:4 (1990), 772–783 | MR | Zbl

[5] S. Čanič, A. Mikelič, “Effective equations modeling the flow of viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arterias”, SIAM J. Applied Dynamical Systems, 2 (2003), 431–463 | DOI | MR | Zbl

[6] J. B. Grotberg, O. E. Jensen, “Biofluid mechanics in flexible fluids”, Annu. Rev. Fluid Mech., 36 (2004), 121–147 | DOI | MR | Zbl

[7] V. A. Kozlov, S. A. Nazarov, “Poverkhnostnaya entalpiya i uprugie svoistva krovenosnykh sosudov”, Dokl. RAN, 441:1 (2011), 38–43 | MR

[8] G. Panasenko, R. Stavre, “Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel”, Netw. Heterog. Media, 5:4 (2010), 783–812 | DOI | MR | Zbl

[9] J. P. Dali, L. F. Donald, “The elastic symmetry of arterial segments in dogs”, Circulation research, 24:1 (1961), 1–8 | DOI

[10] J. Stålhand, A. Klarbring, M. Karlsson, “Towards in vivo aorta material identification and stress estimation”, Biomechan Mechanobiol., 2 (2004), 169–186 | DOI

[11] G. A. Holzafel, “Collagen in Arterial walls: Biomechanical aspets”, Collagen: Structure and Mechanics, ed. Fratzl P., Springer Science+Businss Media, New York–Berlin, 2008, 285–324

[12] S. A. Nazarov, G. Kh. Svirs, A. S. Slutskii, “Osrednenie tonkoi plastiny, usilennoi periodicheskimi semeistvami zhestkikh sterzhnei”, Matem. sb., 202:8 (2011), 41–80 | DOI | MR | Zbl

[13] S. Nazarov, A. Slutskij, G. Sweers, “Korn Inequalities for a Reinforced Plate”, J. Elasticity, 106:1 (2012), 43–69 | DOI | MR | Zbl

[14] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptotika reshenii zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116(158):2 (1981), 187–217 | MR | Zbl

[15] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Birkhäuser Verlag, Basel, 2000 | MR

[16] L. I. Sedov, Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1984

[17] L. D. Landau, E. M. Livshits, Gidrodinamika, Nauka, M., 2001

[18] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl