Leontovich–Fock parabolic equation method in the problems of short-wave diffraction by prolate bodies
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 55-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Application of the parabolic equation to the problems of short-wave diffraction by prolate convex bodies in rotational symmetric case is considered. The wave field is constructed in the Fock's region and in the shaded part of the body where creeping waves appear. In the problems under consideration the following two large parameters arise: $\mathbf M=(k\rho/2)^{1/3}$ and $\mathbf\Lambda=\rho/f$, where $k$ is wave number, $\rho$ is radius of curvature along geodesic (meridians) and $f$ is radius of curvature in the transversal direction. The first one is so-called Fock parameter and the second one $\mathbf\Lambda$ characterizes prolateness of the body. Under condition $\mathbf\Lambda=\mathbf M^{2-\varepsilon}$, $0<\varepsilon<2$, the parabolic equation method in classical form is valid and describes the wave field in terms of Airy and integrals of it. In the case when $\varepsilon=0$ some coefficients in the corresponding recurrent equations become singular and question of solvability of the equations in terms of regular and smooth functions remains open.
@article{ZNSL_2012_409_a4,
     author = {N. Ya. Kirpichnikova and M. M. Popov},
     title = {Leontovich{\textendash}Fock parabolic equation method in the problems of short-wave diffraction by prolate bodies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--79},
     year = {2012},
     volume = {409},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a4/}
}
TY  - JOUR
AU  - N. Ya. Kirpichnikova
AU  - M. M. Popov
TI  - Leontovich–Fock parabolic equation method in the problems of short-wave diffraction by prolate bodies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 55
EP  - 79
VL  - 409
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a4/
LA  - ru
ID  - ZNSL_2012_409_a4
ER  - 
%0 Journal Article
%A N. Ya. Kirpichnikova
%A M. M. Popov
%T Leontovich–Fock parabolic equation method in the problems of short-wave diffraction by prolate bodies
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 55-79
%V 409
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a4/
%G ru
%F ZNSL_2012_409_a4
N. Ya. Kirpichnikova; M. M. Popov. Leontovich–Fock parabolic equation method in the problems of short-wave diffraction by prolate bodies. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 55-79. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a4/

[1] I. V. Andronov, “Difraktsiya na silno vytyanutom tele vrascheniya”, Akust. zh. RAN, 57:2 (2011), 147–152

[2] I. V. Andronov, D. Bush, “Difraktsiya na uzkom krugovom konuse kak na silno vytyanutom tele”, Zap. nauchn. seminarov POMI, 393, 2011, 12–22 | MR

[3] V. A. Fok, Problemy diffraktsii i rasprostraneniya elektromagnitnykh voln, Izd-vo “Sovetskoe radio”, M., 1970

[4] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, “Nauka”, M., 1972 | MR

[5] V M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Izd-vo Leningr. un-ta, L., 1974 | MR

[6] V. S. Buslaev, “Korotkovolnovaya asimptotika v zadache difraktsii na gladkikh vypuklykh konturakh”, Kraevye zadachi matematicheskoi fiziki. 2, Trudy MIAN, 23, 1964, 14–117 | MR

[7] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya vneshnosti ogranichennoi vypukloi oblasti”, DAN SSSR, 146:3 (1962), 571–573 | Zbl

[8] V. B. Filippov, “O strogom opravdanii korotkovolnovoi asimptotiki dlya zadachi difraktsii v zone teni”, Zap. nauchn. semin. LOMI, 34, 1973, 142–205 | MR | Zbl

[9] N. Ya. Kirpichnikova, “O rasprostranenii sosredotochennykh vblizi luchei poverkhnostnykh voln v neodnorodnom uprugom tele proizvolnoi formy”, Matematicheskie voprosy teorii difraktsii i rasprostraneniya voln. 1, Trudy Matem. in-ta im. V. A. Steklova, 115, 1971, 114–130 | MR | Zbl