“Complex source” in 2D real space
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 176-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper concerns the complexified Green function $g_*$ for the 2D Helmholtz equation, which is studied as a non-paraxial model of a Gaussian beam. The function $g_*$ satisfies a certain inhomogeneous Helmholtz equation in the real space with source distribution depending on the choice of the branch of certain complex square root. We discuss various choices of the branch cut and calculate the corresponding source distribution.
@article{ZNSL_2012_409_a10,
     author = {A. M. Tagirdzhanov},
     title = {{\textquotedblleft}Complex source{\textquotedblright} in {2D} real space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--186},
     year = {2012},
     volume = {409},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a10/}
}
TY  - JOUR
AU  - A. M. Tagirdzhanov
TI  - “Complex source” in 2D real space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 176
EP  - 186
VL  - 409
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a10/
LA  - ru
ID  - ZNSL_2012_409_a10
ER  - 
%0 Journal Article
%A A. M. Tagirdzhanov
%T “Complex source” in 2D real space
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 176-186
%V 409
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a10/
%G ru
%F ZNSL_2012_409_a10
A. M. Tagirdzhanov. “Complex source” in 2D real space. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 176-186. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a10/

[1] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[2] G. A. Deschamps, “Gaussian beam as a bundle of complex rays”, Electron. Lett., 7 (1971), 684–685 | DOI

[3] A. A. Izmestev, “Odnoparametricheskie volnovye puchki v svobodnom prostranstve”, Izv. vuzov. Radiofizika, 13:9 (1970), 1380–1388

[4] L. B. Felsen, “Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams”, Symposia Matematica (Istituto Nazionale di Alta Matematica), 18, Academic Press, London, 1976, 39–56 | MR

[5] J. W. Ra, H. Bertoni, L. B. Felsen, “Reflection and transmission of beams at dielectric interfaces”, SIAM J. Appl. Math., 24 (1973), 396–412 | DOI

[6] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Opt. i spektrosk., 102:4 (2007), 603–622 | MR

[7] A. M. Tagirdzhanov, A. S. Blagovestchenskii, A. P. Kiselev, “ ‘Complex source’ wavefields: sources in real space”, J. Phys. A: Math. Theor., 44:42 (2011), 425203 | DOI | MR | Zbl

[8] E. Heyman, L. B. Felsen, “Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics”, J. Opt. Soc. Am. A, 18:7 (2001), 1588–1611 | DOI

[9] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Vyp. 1, Fizmatgiz, Mir, M., 1985

[10] V. I. Smirnov, Kurs vysshei matematiki, v. 2, Nauka, M., 1974 | MR

[11] V. I. Smirnov, Kurs vysshei matematiki, v. 3, ch. 2, Nauka, M., 1974 | MR

[12] M. M. Postnikov, Lektsii po geometrii. Semestr III. Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl

[13] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR