``Complex source'' in 2D real space
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 176-186
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper concerns the complexified Green function $g_*$ for the 2D Helmholtz equation, which is studied as a non-paraxial model of a Gaussian beam. The function $g_*$ satisfies a certain inhomogeneous Helmholtz equation in the real space with source distribution depending on the choice of the branch of certain complex square root. We discuss various choices of the branch cut and calculate the corresponding source distribution.
@article{ZNSL_2012_409_a10,
author = {A. M. Tagirdzhanov},
title = {``Complex source'' in {2D} real space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {176--186},
publisher = {mathdoc},
volume = {409},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a10/}
}
A. M. Tagirdzhanov. ``Complex source'' in 2D real space. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 176-186. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a10/