Dynamical system with boundary control associated with symmetric semi-bounded operator
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 17-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $L_0$ be a closed densely defined symmetric semi-bounded operator with nonzero defect indexes in a separable Hilbert space $\mathcal H$. It determines a Green system $\{\mathcal H,\mathcal B;L_0,\Gamma_1,\Gamma_2\}$, where $\mathcal B$ is a Hilbert space, and $\Gamma_i\colon\mathcal H\to\mathcal B$ are the operators related through the Green formula $$ (L_0^*u, v)_\mathcal H-(u,L_0^*v)_\mathcal H=(\Gamma_1u,\Gamma_2v)_\mathcal B-(\Gamma_2u,\Gamma_1v)_\mathcal B. $$ The boundary space $\mathcal B$ and boundary operators $\Gamma_i$ are chosen canonically in the framework of the Vishik theory. With the Green system one associates a dynamical system with boundary control (DSBC) \begin{align*} &u_{tt}+L_0^*u=0,&&u(t)\in\mathcal H,\,\,t>0,\\ &u|_{t=0}=u_t|_{t=0}=0,&&\\ &\Gamma_1u=f,&&f(t)\in\mathcal B,\,\,\,t\geqslant0. \end{align*} We show that this system is controllable if and only if the operator $L_0$ is completely non-self-adjoint. A version of the notion of a wave spectrum of $L_0$ is introduced. It is a topological space determined by $L_0$ and constructed from reachable sets of the DSBC.
@article{ZNSL_2012_409_a1,
     author = {M. I. Belishev and M. N. Demchenko},
     title = {Dynamical system with boundary control associated with symmetric semi-bounded operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--39},
     year = {2012},
     volume = {409},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - M. N. Demchenko
TI  - Dynamical system with boundary control associated with symmetric semi-bounded operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 17
EP  - 39
VL  - 409
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/
LA  - ru
ID  - ZNSL_2012_409_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%A M. N. Demchenko
%T Dynamical system with boundary control associated with symmetric semi-bounded operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 17-39
%V 409
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/
%G ru
%F ZNSL_2012_409_a1
M. I. Belishev; M. N. Demchenko. Dynamical system with boundary control associated with symmetric semi-bounded operator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 17-39. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/

[1] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[2] M. I. Belishev, “Dynamical systems with boundary control: models and characterization of inverse data”, Inverse Problems, 17:4 (2001), 659–682 | DOI | MR | Zbl

[3] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[4] M. I. Belishev, “Geometrization of Rings as a Method for Solving Inverse Problems”, Sobolev Spaces in Mathematics, v. III, Applications in Mathematical Physics, ed. V. Isakov, Springer, 2008, 5–24 | MR

[5] M. I. Belishev, A unitary invariant of semi-bounded operator in reconstruction of manifolds, 15 Aug. 2012, arXiv: 1208.3084v1[math.FA] | MR

[6] M. I. Belishev, A. K. Glasman, “Dinamicheskaya obratnaya zadacha dlya sistemy Maksvella: vosstanovlenie skorosti v regulyarnoi zone (BC-metod)”, Algebra i analiz, 12:2 (2000), 131–187 | MR | Zbl

[7] G. Birkhoff, Lattice Theory, Providence, Rhode Island, 1967 | MR

[8] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostanstve, LGU, 1980 | MR

[9] R. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR | Zbl

[10] J. L. Kelley, General Topology, D. Van Nostrand Company, Inc., Princeton, New Jersey–Toronto–London–New York, 1957 | MR

[11] A. N. Kochubei, “O rasshireniyakh simmetricheskikh operatorov i simmetricheskikh binarnykh otnoshenii”, Matem. zametki, 17:1 (1975), 41–48 | MR | Zbl

[12] V. Ryzhov, “A general boundary value problem and its Weyl function”, Opuscula Math., 27:2 (2007), 305–331 | MR | Zbl

[13] A. V. Shtraus, “Funktsionalnye modeli i obobschennye spektralnye funktsii simmetricheskikh operatorov”, Algebra i analiz, 10:5 (1998), 1–76 | MR | Zbl

[14] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Trudy Moskovskogo matematicheskogo obschestva, 1, 1952, 187–246 | MR | Zbl

[15] G. Schwartz, Hodge Decomposition – A Method for Solving Boundary Value Problems, Springer, 1995 | MR | Zbl