@article{ZNSL_2012_409_a1,
author = {M. I. Belishev and M. N. Demchenko},
title = {Dynamical system with boundary control associated with symmetric semi-bounded operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--39},
year = {2012},
volume = {409},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/}
}
TY - JOUR AU - M. I. Belishev AU - M. N. Demchenko TI - Dynamical system with boundary control associated with symmetric semi-bounded operator JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 17 EP - 39 VL - 409 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/ LA - ru ID - ZNSL_2012_409_a1 ER -
M. I. Belishev; M. N. Demchenko. Dynamical system with boundary control associated with symmetric semi-bounded operator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 17-39. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/
[1] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl
[2] M. I. Belishev, “Dynamical systems with boundary control: models and characterization of inverse data”, Inverse Problems, 17:4 (2001), 659–682 | DOI | MR | Zbl
[3] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl
[4] M. I. Belishev, “Geometrization of Rings as a Method for Solving Inverse Problems”, Sobolev Spaces in Mathematics, v. III, Applications in Mathematical Physics, ed. V. Isakov, Springer, 2008, 5–24 | MR
[5] M. I. Belishev, A unitary invariant of semi-bounded operator in reconstruction of manifolds, 15 Aug. 2012, arXiv: 1208.3084v1[math.FA] | MR
[6] M. I. Belishev, A. K. Glasman, “Dinamicheskaya obratnaya zadacha dlya sistemy Maksvella: vosstanovlenie skorosti v regulyarnoi zone (BC-metod)”, Algebra i analiz, 12:2 (2000), 131–187 | MR | Zbl
[7] G. Birkhoff, Lattice Theory, Providence, Rhode Island, 1967 | MR
[8] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostanstve, LGU, 1980 | MR
[9] R. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR | Zbl
[10] J. L. Kelley, General Topology, D. Van Nostrand Company, Inc., Princeton, New Jersey–Toronto–London–New York, 1957 | MR
[11] A. N. Kochubei, “O rasshireniyakh simmetricheskikh operatorov i simmetricheskikh binarnykh otnoshenii”, Matem. zametki, 17:1 (1975), 41–48 | MR | Zbl
[12] V. Ryzhov, “A general boundary value problem and its Weyl function”, Opuscula Math., 27:2 (2007), 305–331 | MR | Zbl
[13] A. V. Shtraus, “Funktsionalnye modeli i obobschennye spektralnye funktsii simmetricheskikh operatorov”, Algebra i analiz, 10:5 (1998), 1–76 | MR | Zbl
[14] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Trudy Moskovskogo matematicheskogo obschestva, 1, 1952, 187–246 | MR | Zbl
[15] G. Schwartz, Hodge Decomposition – A Method for Solving Boundary Value Problems, Springer, 1995 | MR | Zbl