Dynamical system with boundary control associated with symmetric semi-bounded operator
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 17-39
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L_0$ be a closed densely defined symmetric semi-bounded operator with nonzero defect indexes in a separable Hilbert space $\mathcal H$. It determines a Green system $\{\mathcal H,\mathcal B;L_0,\Gamma_1,\Gamma_2\}$, where $\mathcal B$ is a Hilbert space, and $\Gamma_i\colon\mathcal H\to\mathcal B$ are the operators related through the Green formula
$$
(L_0^*u, v)_\mathcal H-(u,L_0^*v)_\mathcal H=(\Gamma_1u,\Gamma_2v)_\mathcal B-(\Gamma_2u,\Gamma_1v)_\mathcal B.
$$
The boundary space $\mathcal B$ and boundary operators $\Gamma_i$ are chosen canonically in the framework of the Vishik theory.
With the Green system one associates a dynamical system with boundary control (DSBC)
\begin{align*}
{tt}+L_0^*u=0,(t)\in\mathcal H,\,\,t>0,\\
|_{t=0}=u_t|_{t=0}=0,\\
\Gamma_1u=f,(t)\in\mathcal B,\,\,\,t\geqslant0.
\end{align*}
We show that this system is controllable if and only if the operator $L_0$ is completely non-self-adjoint.
A version of the notion of a wave spectrum of $L_0$ is introduced. It is a topological space determined by $L_0$ and constructed from reachable sets of the DSBC.
@article{ZNSL_2012_409_a1,
author = {M. I. Belishev and M. N. Demchenko},
title = {Dynamical system with boundary control associated with symmetric semi-bounded operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--39},
publisher = {mathdoc},
volume = {409},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/}
}
TY - JOUR AU - M. I. Belishev AU - M. N. Demchenko TI - Dynamical system with boundary control associated with symmetric semi-bounded operator JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 17 EP - 39 VL - 409 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/ LA - ru ID - ZNSL_2012_409_a1 ER -
M. I. Belishev; M. N. Demchenko. Dynamical system with boundary control associated with symmetric semi-bounded operator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 42, Tome 409 (2012), pp. 17-39. http://geodesic.mathdoc.fr/item/ZNSL_2012_409_a1/