Convex hulls of regularly varying processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 154-174

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the asymptotic behaviour of the compact convex subset $\widetilde W_n$ of $\mathbb R^d$ defined as the closed convex hull of the ranges of independent and identically distributed (i.i.d.) random processes $(X_i)_{1\leq i\leq n}$. Under a condition of regular variations on the law of $X_i$'s, we prove the weak convergence of the rescaled convex hulls $\widetilde W_n$ as $n\to\infty$ and analyse the structure and properties of the limit shape. We illustrate our results on several examples of regularly varying processes and show that, in contrast with Gaussian setting, in many cases the limit shape is a random polytope of $\mathbb R^d$.
@article{ZNSL_2012_408_a9,
     author = {Yu. Davydov and C. Dombry},
     title = {Convex hulls of regularly varying processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--174},
     publisher = {mathdoc},
     volume = {408},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a9/}
}
TY  - JOUR
AU  - Yu. Davydov
AU  - C. Dombry
TI  - Convex hulls of regularly varying processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 154
EP  - 174
VL  - 408
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a9/
LA  - en
ID  - ZNSL_2012_408_a9
ER  - 
%0 Journal Article
%A Yu. Davydov
%A C. Dombry
%T Convex hulls of regularly varying processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 154-174
%V 408
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a9/
%G en
%F ZNSL_2012_408_a9
Yu. Davydov; C. Dombry. Convex hulls of regularly varying processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 154-174. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a9/