Convex hulls of regularly varying processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 154-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the asymptotic behaviour of the compact convex subset $\widetilde W_n$ of $\mathbb R^d$ defined as the closed convex hull of the ranges of independent and identically distributed (i.i.d.) random processes $(X_i)_{1\leq i\leq n}$. Under a condition of regular variations on the law of $X_i$'s, we prove the weak convergence of the rescaled convex hulls $\widetilde W_n$ as $n\to\infty$ and analyse the structure and properties of the limit shape. We illustrate our results on several examples of regularly varying processes and show that, in contrast with Gaussian setting, in many cases the limit shape is a random polytope of $\mathbb R^d$.
@article{ZNSL_2012_408_a9,
     author = {Yu. Davydov and C. Dombry},
     title = {Convex hulls of regularly varying processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--174},
     year = {2012},
     volume = {408},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a9/}
}
TY  - JOUR
AU  - Yu. Davydov
AU  - C. Dombry
TI  - Convex hulls of regularly varying processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 154
EP  - 174
VL  - 408
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a9/
LA  - en
ID  - ZNSL_2012_408_a9
ER  - 
%0 Journal Article
%A Yu. Davydov
%A C. Dombry
%T Convex hulls of regularly varying processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 154-174
%V 408
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a9/
%G en
%F ZNSL_2012_408_a9
Yu. Davydov; C. Dombry. Convex hulls of regularly varying processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 154-174. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a9/

[1] P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, second ed., Wiley, New York, 1999 | DOI | MR | Zbl

[2] D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer Series in Statistics, Springer, New York, 1988 | MR | Zbl

[3] R. A. Davis, T. Mikosch, “Extreme value theory for space-time processes with heavy-tailed distributions”, Stochastic Process. Appl., 118:4 (2008), 560–584 | DOI | MR | Zbl

[4] Y. Davydov, “On convex hull of Gaussian samples”, Lith. Math. J., 51:2 (2011), 171–179 | DOI | MR | Zbl

[5] Y. Davydov, C. Dombry, “On the convergence of LePage series in Skorokhod space”, Statist. Probab. Lett., 82:1 (2012), 145–150 | DOI | MR | Zbl

[6] Y. Davydov, I. Molchanov, S. Zuyev, “Strictly stable distributions on convex cones”, Electr. J. Probab., 13:11 (2008), 259–321 | MR | Zbl

[7] H. Hult, F. Lindskog, “Extremal behavior of regularly varying stochastic processes”, Stochastic Process. Appl., 115 (2005), 249–274 | DOI | MR | Zbl

[8] H. Hult, F. Lindskog, “Regular variation for measures on metric spaces”, Publ. Inst. Math. (Beograd) (N.S.), 80:94 (2006), 121–140 | DOI | MR | Zbl

[9] H. Hult, F. Lindskog, “Extremal behavior of stochastic integrals driven by regularly varying Lévy processes”, Ann. Probab., 35:1 (2007), 309–339 | DOI | MR | Zbl

[10] S. N. Majumdar, A. Comptet, J. Randon-Furling, Random convex hulls and extreme value statistics, Preprint, 2009, arXiv: 0912.0631v1

[11] K. Matthes, J. Kerstan, J. Mecke, Infinitely Divisible Point Processes, Translated from the German by B. Simon, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons, Chichester–New York–Brisbane, 1978 | MR | Zbl

[12] I. Molchanov, Theory of Random Sets, Probab. Appl. (New York), Springer, London Ltd., London, 2005 | Zbl

[13] J. Randon-Furling, S. N. Majumdar, A. Comptet, Perimeter and area of the convex hull of $n$ planar Brownian motions, Preprint, 2009, arXiv: 0907.0921v1

[14] S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2008, Reprint of the 1987 original | MR | Zbl

[15] J. Rosiński, “Series representations of Lévy processes from the perspective of point processes”, Lévy Processes, Birkhäuser Boston, Boston, MA, 2001, 401–415 | DOI | MR | Zbl

[16] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Isoperimetry and processes, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 23, Springer, Berlin, 1991 | MR | Zbl