Poisson limit for two-dimensional toral automorphisms driven by continued fractions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 131-153

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalizing powers of a single hyperbolic automorphism of the two-dimensional torus, we consider some class of sequences of such automorphisms. Technically such sequences are determined by means of continued fraction expansions of a pair of real numbers. As a substitute for the pair of foliations in the classical hyperbolic theory, every sequence of this class has a sequence of asymptotically stable and a sequence of asymptotically unstable foliations. We prove a kind of the Poisson limit theorem for such sequences extending a method used earlier by A. Sharova and the present authors to prove a Poisson limit theorem for powers of a single hyperbolic automorphisms of the torus. Possible generalizations are briefly discussed.
@article{ZNSL_2012_408_a8,
     author = {M. Gordin and M. Denker},
     title = {Poisson limit for two-dimensional toral automorphisms driven by continued fractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--153},
     publisher = {mathdoc},
     volume = {408},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a8/}
}
TY  - JOUR
AU  - M. Gordin
AU  - M. Denker
TI  - Poisson limit for two-dimensional toral automorphisms driven by continued fractions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 131
EP  - 153
VL  - 408
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a8/
LA  - ru
ID  - ZNSL_2012_408_a8
ER  - 
%0 Journal Article
%A M. Gordin
%A M. Denker
%T Poisson limit for two-dimensional toral automorphisms driven by continued fractions
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 131-153
%V 408
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a8/
%G ru
%F ZNSL_2012_408_a8
M. Gordin; M. Denker. Poisson limit for two-dimensional toral automorphisms driven by continued fractions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 131-153. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a8/