@article{ZNSL_2012_408_a8,
author = {M. Gordin and M. Denker},
title = {Poisson limit for two-dimensional toral automorphisms driven by continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {131--153},
year = {2012},
volume = {408},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a8/}
}
M. Gordin; M. Denker. Poisson limit for two-dimensional toral automorphisms driven by continued fractions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 131-153. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a8/
[1] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes Math., 470, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl
[2] B. Pitskel, “Poisson limit law for Markov chains”, Ergodic Theory Dynamical Systems, 11 (1991), 501–513 | DOI | MR | Zbl
[3] A. Ya. Khinchin, Tsepnye drobi, 3-e izd., Fizmatgiz, Moskva, 1960
[4] M. Denker, M. Gordin, A. Sharova, “A Poisson limit theorem for toral automorphisms”, Illinois J. Math., 48:1 (2004), 1–20 | MR | Zbl
[5] M. Hirata, “Poisson law for Axiom A diffeomorphisms”, Ergodic Theory Dynamical Systems, 13 (1993), 533–556 | DOI | MR | Zbl
[6] M. Denker, “Remarks on weak limit laws for fractal sets”, Fractal Geometry and Stochastics, Progress Probab., 37, eds. Ch. Bandt, S. Graf, M. Zähle, Birkhäuser, 1995, 167–178 | MR | Zbl
[7] N. Haydn, “The distribution of the first return time for rational maps”, J. Statist. Phys., 94 (1999), 1027–1036 | DOI | MR | Zbl
[8] N. Haydn, “Statistical properties of equilibrium states for rational maps”, Ergodic Theory Dynamical Systems, 20 (2000), 1371–1390 | DOI | MR | Zbl
[9] M. Hirata, S. Benoit, S. Vaienti, “Statistics of return times: a general framework and new applications”, Commun. Math. Phys., 206 (1999), 33–55 | DOI | MR | Zbl
[10] D. Dolgopyat, “Limit Theorems for Partially Hyperbolic Systems”, Transactions Amer. Math. Soc., 356:4 (2003), 1637–1689 | DOI | MR
[11] M. I. Gordin, “Homoclinic approach to the central limit theorem for dynamical systems”, Contemporary Math., 146 (1993), 149–192 | MR
[12] L. H. Y. Chen, “Poisson approximation for dependent trials”, Ann. Probab., 3 (1975), 534–545 | DOI | MR | Zbl
[13] R. Arratia, L. Goldstein, L. Gordon, “Poisson approximation and the Chen–Stein method”, Statist. Sci., 5 (1990), 403–434 | MR | Zbl
[14] A. D. Barbour, L. Holst, S. Janson, Poisson Approximation, Oxford Studies in Probability, 2, The Clarendon Press, Oxford University Press, New York, 1992 | MR | Zbl
[15] G. A. Margulis, On some aspects of the theory of Anosov systems, With a survey by R. Sharp: “Periodic orbits of hyperbolic flows”, Springer Monographs in Mathematics, Springer, 2004 | MR
[16] A. Eskin, C. McMullen, “Mixing, counting, and equidistribution in Lie groups”, Duke Math. J., 71:1 (1993), 181–209 | DOI | MR | Zbl
[17] V. I. Bakhtin, “Sluchainye protsessy, porozhdënnye giperbolicheskoi posledovatelnostyu otobrazhenii. I”, Izv. RAN. Ser. matem., 58:2 (1994), 40–72 | MR | Zbl
[18] Ch. Stein, Approximate Computation of Expectations, Institute of Mathematical Statistics Lect. Notes – Monograph Series, 7, Institute of Mathematical Statistics, Hayward, CA, 1986 | MR | Zbl