@article{ZNSL_2012_408_a7,
author = {K. Yu. Volkova and Ya. Yu. Nikitin},
title = {Goodness-of-fit tests for the power function distribution based on {Puri{\textendash}Rubin} characterization and their efficiencies},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {115--130},
year = {2012},
volume = {408},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a7/}
}
TY - JOUR AU - K. Yu. Volkova AU - Ya. Yu. Nikitin TI - Goodness-of-fit tests for the power function distribution based on Puri–Rubin characterization and their efficiencies JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 115 EP - 130 VL - 408 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a7/ LA - ru ID - ZNSL_2012_408_a7 ER -
%0 Journal Article %A K. Yu. Volkova %A Ya. Yu. Nikitin %T Goodness-of-fit tests for the power function distribution based on Puri–Rubin characterization and their efficiencies %J Zapiski Nauchnykh Seminarov POMI %D 2012 %P 115-130 %V 408 %U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a7/ %G ru %F ZNSL_2012_408_a7
K. Yu. Volkova; Ya. Yu. Nikitin. Goodness-of-fit tests for the power function distribution based on Puri–Rubin characterization and their efficiencies. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 115-130. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a7/
[1] R. R. Bahadur, Some Limit Theorems in Statistics, SIAM, Philadelphia, 1971 | MR | Zbl
[2] L. Baringhaus, N. Henze, “Tests of fit for exponentiality based on a characterization via the mean residual life function”, Statist. Papers, 41 (2000), 225–236 | DOI | MR | Zbl
[3] J. Durbin, “Weak convergence of the sample distribution function when parameters are estimated”, Ann. Statist., 1 (1973), 279–290 | DOI | MR | Zbl
[4] M. A. Ferreira, M. Andrade, “The $M/G/\infty$ queue busy period distribution exponentiality”, J. Appl. Math., 4 (2011), 249–260
[5] J. Galambos, “Characterizations”, Handbook of the Logistic Distribution, ed. N. Balakrishnan, Marcel Dekker, New York, 1992, 170–188 | MR
[6] N. Henze, S. Meintanis, “Goodness-of-fit tests based on a new characterization of the exponential distribution”, Commun. Statist. Theor. Meth., 31 (2002), 1479–1497 | DOI | MR | Zbl
[7] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl
[8] P. L. Janssen, Generalized Empirical Distribution Functions With Statistical Applications, Limburgs Universitair Centrum, Diepenbeek, 1988
[9] V. S. Korolyuk, Yu. V. Borovskikh, Theory of $U$-Statistics, Kluwer, Dordrecht, 1994 | MR | Zbl
[10] G. V. Martynov, “Cramér–von Mises test for the Weibull and Pareto distributions”, Proc. Dobrushin Intern. Conf., Moscow, 2009, 117–122
[11] G. V. Martynov, “Cramér–von Mises test for the Weibull and Pareto distributions”, Abstr. Intern. conf.“Probability and Statistics with applications” dedicated to the 100th anniv. of the birthday of Béla Gyires, Debrecen, 2009, 42–44
[12] M. Meniconi, D. M. Barry, “The power function distribution. A useful and simple distribution to assess electrical component reliability”, Microelectr. Reliab., 36 (1996), 1207–1212 | DOI
[13] K. Morris, D. Szynal, “Goodness-of-fit tests using characterizations of continuous distributions”, Appl. Math. (Warsaw), 28 (2001), 151–168 | DOI | MR | Zbl
[14] Y. Nikitin, Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, New York, 1995 | MR | Zbl
[15] Ya. Yu. Nikitin, “Large deviations of $U$-empirical Kolmogorov–Smirnov tests, and their efficiency”, J. Nonpar. Stat., 22 (2010), 649–668 | DOI | MR | Zbl
[16] Ya. Yu. Nikitin, I. Peaucelle, “Efficiency and local optimality of distribution-free tests based on $U$- and $V$-statistics”, Metron, 62 (2004), 185–200 | MR
[17] AMS Transl. Ser. 2, 203 (2001), 107–146 | MR | MR | Zbl
[18] Ya. Yu. Nikitin, A. V. Tchirina, “Bahadur efficiency and local optimality of a test for the exponential distribution based on the Gini statistic”, Statist. Meth. Appl., 5 (1996), 163–175 | MR | Zbl
[19] Ya. Yu. Nikitin, K. Yu. Volkova, “Asymptotic efficiency of exponentiality tests based on order statistics characterization”, Georgian Math. J., 17 (2010), 749–763 | MR | Zbl
[20] P. S. Puri, H. Rubin, “A characterization based on the absolute difference of two iid random variables”, Ann. Math. Statist., 41 (1970), 2113–2122 | DOI | MR | Zbl
[21] B. W. Silverman, “Convergence of a class of empirical distribution functions of dependent random variables”, Ann. Probab., 11 (1983), 745–751 | DOI | MR | Zbl
[22] Z. Wu, B. Kazaz, S. Webster, K. K. Yang, “Ordering, pricing, and lead-time quotation under lead-time and demand uncertainty”, Production Operat. Manag., 21 (2012), 576–589 | DOI