Goodness-of-fit tests for the power function distribution based on Puri–Rubin characterization and their efficiencies
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 115-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct integral and supremum type goodness-of-fit tests for the family of power distribution functions. Test statistics are functionals of $U$-empirical processes and are based on the classical characterization of power function distribution family belonging to Puri and Rubin. We describe the logarithmic large deviation asymptotics of test statistics under null-hypothesis, and calculate their local Bahadur efficiency under common parametric alternatives. Conditions of local optimality of new statistics are given.
@article{ZNSL_2012_408_a7,
     author = {K. Yu. Volkova and Ya. Yu. Nikitin},
     title = {Goodness-of-fit tests for the power function distribution based on {Puri{\textendash}Rubin} characterization and their efficiencies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {115--130},
     year = {2012},
     volume = {408},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a7/}
}
TY  - JOUR
AU  - K. Yu. Volkova
AU  - Ya. Yu. Nikitin
TI  - Goodness-of-fit tests for the power function distribution based on Puri–Rubin characterization and their efficiencies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 115
EP  - 130
VL  - 408
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a7/
LA  - ru
ID  - ZNSL_2012_408_a7
ER  - 
%0 Journal Article
%A K. Yu. Volkova
%A Ya. Yu. Nikitin
%T Goodness-of-fit tests for the power function distribution based on Puri–Rubin characterization and their efficiencies
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 115-130
%V 408
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a7/
%G ru
%F ZNSL_2012_408_a7
K. Yu. Volkova; Ya. Yu. Nikitin. Goodness-of-fit tests for the power function distribution based on Puri–Rubin characterization and their efficiencies. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 115-130. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a7/

[1] R. R. Bahadur, Some Limit Theorems in Statistics, SIAM, Philadelphia, 1971 | MR | Zbl

[2] L. Baringhaus, N. Henze, “Tests of fit for exponentiality based on a characterization via the mean residual life function”, Statist. Papers, 41 (2000), 225–236 | DOI | MR | Zbl

[3] J. Durbin, “Weak convergence of the sample distribution function when parameters are estimated”, Ann. Statist., 1 (1973), 279–290 | DOI | MR | Zbl

[4] M. A. Ferreira, M. Andrade, “The $M/G/\infty$ queue busy period distribution exponentiality”, J. Appl. Math., 4 (2011), 249–260

[5] J. Galambos, “Characterizations”, Handbook of the Logistic Distribution, ed. N. Balakrishnan, Marcel Dekker, New York, 1992, 170–188 | MR

[6] N. Henze, S. Meintanis, “Goodness-of-fit tests based on a new characterization of the exponential distribution”, Commun. Statist. Theor. Meth., 31 (2002), 1479–1497 | DOI | MR | Zbl

[7] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl

[8] P. L. Janssen, Generalized Empirical Distribution Functions With Statistical Applications, Limburgs Universitair Centrum, Diepenbeek, 1988

[9] V. S. Korolyuk, Yu. V. Borovskikh, Theory of $U$-Statistics, Kluwer, Dordrecht, 1994 | MR | Zbl

[10] G. V. Martynov, “Cramér–von Mises test for the Weibull and Pareto distributions”, Proc. Dobrushin Intern. Conf., Moscow, 2009, 117–122

[11] G. V. Martynov, “Cramér–von Mises test for the Weibull and Pareto distributions”, Abstr. Intern. conf.“Probability and Statistics with applications” dedicated to the 100th anniv. of the birthday of Béla Gyires, Debrecen, 2009, 42–44

[12] M. Meniconi, D. M. Barry, “The power function distribution. A useful and simple distribution to assess electrical component reliability”, Microelectr. Reliab., 36 (1996), 1207–1212 | DOI

[13] K. Morris, D. Szynal, “Goodness-of-fit tests using characterizations of continuous distributions”, Appl. Math. (Warsaw), 28 (2001), 151–168 | DOI | MR | Zbl

[14] Y. Nikitin, Asymptotic Efficiency of Nonparametric Tests, Cambridge University Press, New York, 1995 | MR | Zbl

[15] Ya. Yu. Nikitin, “Large deviations of $U$-empirical Kolmogorov–Smirnov tests, and their efficiency”, J. Nonpar. Stat., 22 (2010), 649–668 | DOI | MR | Zbl

[16] Ya. Yu. Nikitin, I. Peaucelle, “Efficiency and local optimality of distribution-free tests based on $U$- and $V$-statistics”, Metron, 62 (2004), 185–200 | MR

[17] AMS Transl. Ser. 2, 203 (2001), 107–146 | MR | MR | Zbl

[18] Ya. Yu. Nikitin, A. V. Tchirina, “Bahadur efficiency and local optimality of a test for the exponential distribution based on the Gini statistic”, Statist. Meth. Appl., 5 (1996), 163–175 | MR | Zbl

[19] Ya. Yu. Nikitin, K. Yu. Volkova, “Asymptotic efficiency of exponentiality tests based on order statistics characterization”, Georgian Math. J., 17 (2010), 749–763 | MR | Zbl

[20] P. S. Puri, H. Rubin, “A characterization based on the absolute difference of two iid random variables”, Ann. Math. Statist., 41 (1970), 2113–2122 | DOI | MR | Zbl

[21] B. W. Silverman, “Convergence of a class of empirical distribution functions of dependent random variables”, Ann. Probab., 11 (1983), 745–751 | DOI | MR | Zbl

[22] Z. Wu, B. Kazaz, S. Webster, K. K. Yang, “Ordering, pricing, and lead-time quotation under lead-time and demand uncertainty”, Production Operat. Manag., 21 (2012), 576–589 | DOI