Bounds on the maximum of the density for sums of independent random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 62-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Sublinear bounds on the maximum of the density for sums of independent random variables are given in terms of the maxima of the densities of the summands.
@article{ZNSL_2012_408_a3,
     author = {S. G. Bobkov and G. P. Chistyakov},
     title = {Bounds on the maximum of the density for sums of independent random variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {62--73},
     year = {2012},
     volume = {408},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a3/}
}
TY  - JOUR
AU  - S. G. Bobkov
AU  - G. P. Chistyakov
TI  - Bounds on the maximum of the density for sums of independent random variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 62
EP  - 73
VL  - 408
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a3/
LA  - ru
ID  - ZNSL_2012_408_a3
ER  - 
%0 Journal Article
%A S. G. Bobkov
%A G. P. Chistyakov
%T Bounds on the maximum of the density for sums of independent random variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 62-73
%V 408
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a3/
%G ru
%F ZNSL_2012_408_a3
S. G. Bobkov; G. P. Chistyakov. Bounds on the maximum of the density for sums of independent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 62-73. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a3/

[1] A. Dembo, T. M. Cover, J. A. Thomas, “Information-theoretic inequalities”, IEEE Trans. Inform. Theory, 37:6 (1991), 1501–1518 | DOI | MR | Zbl

[2] O. Johnson, Information Theory and the Central Limit Theorem, Imperial College Press, London, 2004 | MR | Zbl

[3] S. G. Bobkov, M. Madiman, “Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures”, J. Funct. Anal., 262:7 (2012), 3309–3339 | DOI | MR | Zbl

[4] A. J. Stam, “Some inequalities satisfied by the quantities of information of Fisher and Shannon”, Information Control, 2 (1959), 101–112 | DOI | MR | Zbl

[5] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Fizmatlit, M., 1972 | MR

[6] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980 | MR | Zbl

[7] S. G. Bobkov, G. P. Chistyakov, F. Götze, “Bounds for characteristic functions in terms of quantiles and entropy”, Electron. Commun. Probab., 17 (2012), Article 21, 9 pp. | DOI | MR | Zbl

[8] E. H. Lieb, “Proof of an entropy conjecture of Wehrl”, Comm. Math. Phys., 62:1 (1978), 35–41 | DOI | MR | Zbl

[9] W. Beckner, “Inequalities in Fourier analysis”, Ann. Math., 2:1 (1975), 159–182 | DOI | MR | Zbl

[10] H. J. Brascamp, E. H. Lieb, “Best constants in Young's inequality, its converse, and its generalization to more than three functions”, Advances Math., 20:2 (1976), 151–173 | DOI | MR | Zbl

[11] F. Barthe, “Optimal Young's inequality and its converse: a simple proof”, Geom. Funct. Anal., 8:2 (1998), 234–242 | DOI | MR | Zbl

[12] S. G. Bobkov, C. Houdre, P. Tetali, “The subgaussian constant and concentration inequalities”, Israel J. Math., 156 (2006), 255–283 | DOI | MR | Zbl

[13] B. A. Rogozin, “Otsenka maksimuma svertki ogranichennykh plotnostei”, Teoriya veroyatn. i ee primen., 32:1 (1987), 53–61 | MR | Zbl

[14] Yu. V. Prokhorov, “Ekstremalnye zadachi v predelnykh teoremakh”, Trudy VI Vsesoyuznogo soveschaniya po teorii veroyatnostei i matematicheskoi statistike, Gos. izd-vo polit. i nauchn. liter. Lit.SSR, Vilnyus, 1962, 77–84

[15] K. Ball, “Cube slicing in $\mathbf R^n$”, Proc. Amer. Math. Soc., 97:3 (1986), 465–473 | MR | Zbl

[16] K. Ball, “Some remarks on the geometry of convex sets”, Lect. Notes Math., 1317, 1988, 224–231 | DOI | MR | Zbl

[17] L. P. Postnikova, A. A. Yudin, “Usilennaya forma dlya funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 23:2 (1978), 376–379 | MR | Zbl

[18] A. L. Miroshnikov, B. A. Rogozin, “Neravenstva dlya funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 25:1 (1980), 178–183 | MR | Zbl