On chi-squared type tests and their applications in survival analysis and reliability
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 43-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The famous chi-square test of Pearson is well known, but different modifications of this test are not so well known. The theory of the chi-squared tests is developed very actively till now, especially in accelerated trials. We shall discuss here some applications of the theory of chi-squared tests in reliability and survival analysis for parametric regression models with time depending covariates when data are right censored.
@article{ZNSL_2012_408_a2,
     author = {V. Bagdonavi\v{c}ius and R. Levuliene and M. S. Nikulin and Q. X. Tran},
     title = {On chi-squared type tests and their applications in survival analysis and reliability},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--61},
     year = {2012},
     volume = {408},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a2/}
}
TY  - JOUR
AU  - V. Bagdonavičius
AU  - R. Levuliene
AU  - M. S. Nikulin
AU  - Q. X. Tran
TI  - On chi-squared type tests and their applications in survival analysis and reliability
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 43
EP  - 61
VL  - 408
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a2/
LA  - en
ID  - ZNSL_2012_408_a2
ER  - 
%0 Journal Article
%A V. Bagdonavičius
%A R. Levuliene
%A M. S. Nikulin
%A Q. X. Tran
%T On chi-squared type tests and their applications in survival analysis and reliability
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 43-61
%V 408
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a2/
%G en
%F ZNSL_2012_408_a2
V. Bagdonavičius; R. Levuliene; M. S. Nikulin; Q. X. Tran. On chi-squared type tests and their applications in survival analysis and reliability. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 43-61. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a2/

[1] O. Aalen, “Nonparametric inference for the family of counting processes”, Ann. Statist., 6 (1978), 701–726 | DOI | MR | Zbl

[2] M. G. Akritas, “Pearson-type goodness-of-fit tests: the univariate case”, J. Amer. Statist. Assoc., 83 (1988), 222–230 | DOI | MR | Zbl

[3] P. K. Andersen, O. Borgan, R. G. Gill, N. Keiding, Statistical models based on counting processes, Springer-Verlag, New York, 1993 | MR | Zbl

[4] T. Aven, U. Jensen, Stochastic models in reliability, Springer, New York, 1999 | MR | Zbl

[5] V. Bagdonavičius, M. Nikulin, Accelerated life models, Chapman and Hall/CRC, Boca-Raton, 2002

[6] V. Bagdonavičius, J. Kruopis, M. S. Nikulin, Nonparametric tests for censored data, ISTE and Wiley, London, 2011 | Zbl

[7] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968 | MR | Zbl

[8] H. Chernoff, E. L. Lehmann, “The use of maximum likelihood estimates in $\chi^2$ tests for goodness of fit”, Ann. Statist., 25 (1954), 579–586 | DOI | MR | Zbl

[9] H. Cramer, Mathematical methods of statistics, Princeton University Press, Princeton–New York, 1946 | MR | Zbl

[10] F. Drost, Asymptotics for generalized chi-squared goodness-of-fit tests, CWI Tracs, 48, Centre for Mathematics and Computer Sciences, Amsterdam, 1988 | MR | Zbl

[11] P. Greenwood, M. S. Nikulin, A guide to chi-squared testing, Wiley, New York, 1996 | MR | Zbl

[12] M. G. Habib, D. R. Thomas, “Chi-squared goodness-of-fit tests for randomly censored data”, Ann. of Statist., 14 (1986), 759–765 | DOI | MR | Zbl

[13] N. L. Hjort, “Goodness of fit tests in models for life history data based on cumulative hazard rates”, Ann. Statist., 18 (1990), 1221–1258 | DOI | MR | Zbl

[14] M. Hollander, E. Pena, “Chi-square goodness-of-fit test for randomly censored data”, JASA, 87 (1992), 458–463 | DOI | MR | Zbl

[15] I. A. Ibragimov, R. Z. Hasminskii, Statistical estimation. Asymptotic theory, Springer-Verlag, Heidelberg, 1981 | MR | Zbl

[16] J. P. Klein, M. L. Moeschberger, Survival analysis,techniques for censored and truncated data, Springer-Verlag, New York, 1997

[17] J. F. Lawless, Statistical models and methods for lifetime data, 2nd ed., Wiley, New York, 2003 | MR | Zbl

[18] L. LeCam, C. Mahan, C. A. Singh, “An extension of a theorem of H. Chernoff and E. L. Lehmann”, Recent advances in statistics, Academic Press, Orlando, 1983, 303–332 | DOI | MR

[19] B. Y. Lemeshko, S. B. Lemeshko, S. N. Postovalov, E. V. Chimitova, Statistical data analysis, simulation and study of probability regularities. Computer approach, NSTU Publisher, Novosibirsk, 2011

[20] D. Moore, M. Spruill, “Unified large-sample theory of general chi-squared statistics for tests of fit”, Ann. Statist., 3 (1975), 599–616 | MR | Zbl

[21] W. Nelson, Accelerated testing: statistical methods, tests, plans, and data analysis, Wiley, New York, 1990

[22] M. S. Nikulin, “Chi-square test for normality”, International Vilnius conference on probability theory and mathematical statistics, v. 2, 1973, 119–122

[23] M. S. Nikulin, “Chi-square test for continuous distribution with shift and scale parameters”, Theory Probab. Appl., 18 (1973), 559–568 | DOI | MR | Zbl

[24] M. S. Nikulin, “On a chi-square test for continuous distribution”, Theory Probab. Appl., 18 (1973), 638–639 | MR | Zbl

[25] E. Pena, “Smooth goodness-of-fit tests for composite hypothesis in hazard based models”, Ann. Statist., 26 (1998), 1935–1971 | DOI | MR | Zbl

[26] K. C. Rao, D. S. Robson, “A chi-square statistics for goodness-of-fit tests within the exponential family”, Commun. Statist., 3 (1974), 1139–1153 | DOI | MR

[27] A. W. van der Vaart, Asymptotic Statistics, Cambridge, UK, 1998 | MR

[28] V. Voinov, M. S. Nikulin, Unbiased estimators and their applications, v. 1, Continuous case, Kluwer Academic Publishers, Dordrecht, 1993 | MR | Zbl

[29] V. G. Voinov, M. S. Nikulin, N. Balakrishnan, Chi-squared goodness-of-tit tests with applications, Academic Press, 2012 (to appear)

[30] B. Zhang, “A chi-squared goodness of-fit test for logistic regression models based on case-control data”, Biometrika, 86 (1999), 531–539 | DOI | MR | Zbl