Measures and Dirichlet forms under the Gelfand transform
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 303-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the standard tools of Daniell–Stone integrals, Stone–Čech compactification and Gelfand transform, we show explicitly that any closed Dirichlet form defined on a measurable space can be transformed into a regular Dirichlet form on a locally compact space. This implies existence, on the Stone–Čech compactification, of the associated Hunt process. As an application, we show that for any separable resistance form in the sense of Kigami there exists an associated Markov process.
@article{ZNSL_2012_408_a18,
     author = {M. Hinz and D. Kelleher and A. Teplyaev},
     title = {Measures and {Dirichlet} forms under the {Gelfand} transform},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {303--322},
     year = {2012},
     volume = {408},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a18/}
}
TY  - JOUR
AU  - M. Hinz
AU  - D. Kelleher
AU  - A. Teplyaev
TI  - Measures and Dirichlet forms under the Gelfand transform
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 303
EP  - 322
VL  - 408
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a18/
LA  - en
ID  - ZNSL_2012_408_a18
ER  - 
%0 Journal Article
%A M. Hinz
%A D. Kelleher
%A A. Teplyaev
%T Measures and Dirichlet forms under the Gelfand transform
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 303-322
%V 408
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a18/
%G en
%F ZNSL_2012_408_a18
M. Hinz; D. Kelleher; A. Teplyaev. Measures and Dirichlet forms under the Gelfand transform. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 303-322. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a18/

[1] S. Albeverio, Z.-M. Ma, M. Röckner, “A Beurling–Deny type structure theorem for Dirichlet forms on general state spaces”, Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, eds. S. Albeverio, J. E. Fenstad, H. Holden, T. Lindstrøm, Cambridge Univ. Press, Cambridge, 1992, 115–123 | MR

[2] S. Albeverio, M. Röckner, “Classical Dirichlet forms on topological vector spaces – construction of an associated diffusion process”, Probab. Th. Rel. Fields, 83 (1989), 405–434 | DOI | MR | Zbl

[3] S. Albeverio, M. Röckner, “Classical Dirichlet forms on topological vector spaces – closability and a Cameron-Martin formula”, J. Funct. Anal., 88 (1990), 395–436 | DOI | MR | Zbl

[4] G. Allain, “Sur la représentation des formes de Dirichlet”, Ann. Inst. Fourier, 25 (1975), 1–10 | DOI | MR | Zbl

[5] W. Arveson, An invitation to $C^\ast$-algebra, Springer Graduate Texts Math., 39, Springer, New York, 1976 | DOI | MR | Zbl

[6] A. Beurling, J. Deny, “Espaces de Dirichlet I, le cas élémentaire”, Acta Math., 99 (1958), 203–224 | DOI | MR | Zbl

[7] B. Blackadar, Operator algebras: theory of $C^\ast$-algebras and von Neumann algebras, Encyclopedia Math. Sciences, 122, Springer, New York, 2006 | DOI | MR | Zbl

[8] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, de Gruyter Studies Math., 14, de Gruyter, Berlin, 1991 | MR | Zbl

[9] J. Deny, Méthodes Hilbertiennes et Théorie du Potentiel, CIME, Rome, 1970

[10] E. B. Dynkin, Foundations of the Theory of Markov Processes, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1959 | MR

[11] E. B. Dynkin, Markov Processes, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1963 | MR | Zbl

[12] R. M. Dudley, Real Analysis and Probability, Cambridge Studies Adv. Math., 74, Cambridgr Univ. Press, Cambridge, 2002 | MR | Zbl

[13] P. J. Fitzsimmons, “Markov processes and nonsymmetri Dirichlet forms without regularity”, J. Funct. Anal., 85 (1989), 287–306 | DOI | MR | Zbl

[14] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin–New York, 1994 | MR | Zbl

[15] B. Fuchssteiner, “When does the Riesz representation theorem hold?”, Arch. Math., 28 (1977), 173–181 | DOI | MR | Zbl

[16] L. Gross, “Potential theory on Hilbert space”, J. Funct. Anal., 1 (1967), 123–181 | DOI | MR | Zbl

[17] L. Gross, “Abstract Wiener spaces”, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Part 1, v. II, Contributions to Probability Theory, Univ. California Press, Berkeley, Calif., 1967, 31–42 | MR | Zbl

[18] I. A. Ibragimov, Y. A. Rozanov, Gaussian Random Processes, Nauka, Moscow, 1970; Springer, New York–Berlin, 1978 | Zbl

[19] E. Kaniuth, A Course in Commutative Banach Algebras, Springer, New York, 2009 | MR | Zbl

[20] J. Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, 143, Cambridge University Press, 2001 | MR | Zbl

[21] J. Kigami, “Harmonic analysis for resistance forms”, J. Funct. Anal., 204 (2003), 525–544 | DOI | MR

[22] J. Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math. Soc., 216, no. 1015, 2012 | MR

[23] A. A. Kirillov, A tale of two fractals, MCMNO, 2010 (in Russian)

[24] Y. LeJan, “Mesures associées à une forme de Dirichlet. Applications”, Bull. Soc. Math. France, 106 (1978), 61–112 | MR | Zbl

[25] Z.-M. Ma, M. Röckner, Introduction to the Theory of Nonsymmetric Dirichlet Forms, Universitext, Springer, Berlin, 1992 | MR | Zbl

[26] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. I, Functional Analysis, Academic Press, 1980 | MR | Zbl

[27] L. C. G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales, v. I, Foundations, 2nd ed., Wiley, 1994 | MR | Zbl

[28] R. S. Strichartz, Differential Equations on Fractals: a Tutorial, Princeton University Press, 2006 | MR | Zbl

[29] V. N. Sudakov, Geometric problems of the theory of infinite-dimensional probability distributions, Trudy Mat. Inst. Steklov, 141, 1976, 191 pp. | MR | Zbl