Measures and Dirichlet forms under the Gelfand transform
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 303-322
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the standard tools of Daniell–Stone integrals, Stone–Čech compactification and Gelfand transform, we show explicitly that any closed Dirichlet form defined on a measurable space can be transformed into a regular Dirichlet form on a locally compact space. This implies existence, on the Stone–Čech compactification, of the associated Hunt process. As an application, we show that for any separable resistance form in the sense of Kigami there exists an associated Markov process.
@article{ZNSL_2012_408_a18,
author = {M. Hinz and D. Kelleher and A. Teplyaev},
title = {Measures and {Dirichlet} forms under the {Gelfand} transform},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {303--322},
publisher = {mathdoc},
volume = {408},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a18/}
}
M. Hinz; D. Kelleher; A. Teplyaev. Measures and Dirichlet forms under the Gelfand transform. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 303-322. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a18/