On the strong law of large numbers for a sequence of dependent random variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 285-288
Cet article a éte moissonné depuis la source Math-Net.Ru
New sufficient conditions are found for the applicability of the strong law of large numbers to a sequence of random variables without assumptions of independence or nonnegativity.
@article{ZNSL_2012_408_a16,
author = {V. V. Petrov},
title = {On the strong law of large numbers for a~sequence of dependent random variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {285--288},
year = {2012},
volume = {408},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a16/}
}
V. V. Petrov. On the strong law of large numbers for a sequence of dependent random variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 285-288. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a16/
[1] O. Barndorff-Nielsen, “Characteristic subsequuences and limit laws for weighted means”, Trans. Third Prague conference on information theory, statistical decision function, random processes, Publishing House of the Czechoslovak Akad. Sci., Prague, 1964, 17–27 | MR
[2] A. Dvoretzky, “On the strong stability of a sequence of events”, Ann. Math. Statist., 20:2 (1949), 296–299 | DOI | MR | Zbl
[3] V. V. Petrov, “K usilennomu zakonu bolshikh chisel dlya posledovatelnosti neotritsatelnykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 384, 2010, 182–184 | MR