@article{ZNSL_2012_408_a14,
author = {A. M. Kagan and Tinghui Yu and A. Barron and M. Madiman},
title = {Contribution to the theory of {Pitman} estimators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {245--267},
year = {2012},
volume = {408},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a14/}
}
A. M. Kagan; Tinghui Yu; A. Barron; M. Madiman. Contribution to the theory of Pitman estimators. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 245-267. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a14/
[1] S. Artstein, K. M. Ball, F. Barthe, A. Naor, “Solution of Shannon's problem on the monotonicity of entropy”, J. Amer. Math. Soc., 17:4 (2004), 975–982, (electronic) | DOI | MR | Zbl
[2] A. DasGupta, “Letter to the editors”, IMS Bulletin, 37:6 (2008), 16
[3] E. A. Carlen, “Superadditivity of Fisher's information and logarithmic Sobolev inequalities”, J. Funct. Anal., 101:1 (1991), 194–211 | DOI | MR | Zbl
[4] B. Efron, C. Stein, “The jackknife estimate of variance”, Ann. Statist., 9:3 (1981), 586–596 | DOI | MR | Zbl
[5] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl
[6] J. Hoffmann-Jørgensen, A. M. Kagan, L. D. Pitt, L. A. Shepp, “Strong decomposition of random variables”, J. Theor. Probab., 20:2 (2007), 211–220 | DOI | MR | Zbl
[7] I. A. Ibragimov, R. Z. Has'minski, Statistical Estimation: Asymptotic Theory, Applications of Mathematics, 16, Springer, New York, 1981 | MR | Zbl
[8] A. Kagan, Z. Landsman, “Statistical meaning of Carlen's superadditivity of the Fisher information”, Statist. Probab. Lett., 32 (1997), 175–179 | DOI | MR | Zbl
[9] A. M. Kagan, Ya. Malinovsky, “Monotonicity in the sample size of the length of classical confidence intervals”, Statist. Probab. Lett., 83:1 (2013), 78–82 | DOI | MR | Zbl
[10] A. Kagan, “An inequality for the Pitman estimators related to the Stam inequality”, Sankhyā, Ser. A, 64 (2002), 281–292 | MR
[11] A. M. Kagan, “On the estimation theory of location parameter”, Sankhyā, Ser. A, 28 (1966), 335–352 | MR | Zbl
[12] A. M. Kagan, “Fisher information contained in a finite-dimensional linear space, and a properly formulated version of the method of moments”, Probl. Peredači Inform., 12:2 (1976), 20–42 | MR | Zbl
[13] A. M. Kagan, L. B. Klebanov, S. M. Fintušal, “Asymptotic behavior of polynomial Pitman estimators”, Zap. Nauchn. Semin. LOMI, 43, 1974, 30–39 | MR
[14] E. Lukacs, Characteristic Functions, 2nd ed., Hafner Publishing Co., New York, 1970 | MR
[15] M. Madiman, A. R. Barron, A. M. Kagan, T. Yu, Fundamental limits for distributed estimation: the case of a location parameter, Preprint, 2009
[16] M. Madiman, A. R. Barron, A. M. Kagan, T. Yu, “A model for pricing data bundles based on minimax risks for estimation of a location parameter”, Proc. IEEE Inform. Theory Workshop (Volos, Greece, June 2009)
[17] M. Madiman, A. R. Barron, “Generalized entropy power inequalities and monotonicity properties of information”, IEEE Trans. Inform. Theory, 53:7 (2007), 2317–2329 | DOI | MR
[18] J. Shao, Mathematical Statistics, 2nd ed., Springer, New York, 2003 | MR
[19] N.-Z. Shi, “Letter to the Editors”, IMS Bulletin, 36:4 (2008), 4
[20] A. J. Stam, “Some inequalities satisfied by the quantities of information of Fisher and Shannon”, Inform. Control, 2 (1959), 101–112 | DOI | MR | Zbl
[21] R. Zamir, “A proof of the Fisher information inequality via a data processing argument”, IEEE Trans. Inform. Theory, 44:3 (1998), 1246–1250 | DOI | MR | Zbl