Adaptive variable selection in nonparametric sparse regression
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 214-244
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of exact recovery of an unknown multivariate function $f$ observed in the continuous regression model. It is assumed that, in addition to some smoothness constraints, $f$ possesses an additive sparse structure determined by the sparsity index $\beta\in (0,1)$. As a consequence of the additive sparsity assumption, the recovery problem transforms to a variable selection problem. Conditions for exact variable selection are provided, and a family of asymptotically minimax variable selection procedures is constructed. The procedures are adaptive in the sparsity index $\beta$.
@article{ZNSL_2012_408_a13,
author = {Yu. I. Ingster and N. A. Stepanova},
title = {Adaptive variable selection in nonparametric sparse regression},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {214--244},
publisher = {mathdoc},
volume = {408},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a13/}
}
Yu. I. Ingster; N. A. Stepanova. Adaptive variable selection in nonparametric sparse regression. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 214-244. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a13/