Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 187-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider a $d\times d$ matrix $M$ whose rows are independent centered non-degenerate Gaussian vectors $\xi_1,\ldots,\xi_d$ with covariance matrices $\Sigma_1,\dots,\Sigma_d$. Denote by $\mathcal E_i$ the location-dispersion ellipsoid of $\xi_i$: $\mathcal E_i=\{\mathbf x\in\mathbb R^d\colon\mathbf x^\top\Sigma_i^{-1} \mathbf x\leqslant1\}$. We show that $$ \mathbb E\,|\det M|=\frac{d!}{(2\pi)^{d/2}}V_d(\mathcal{E}_1,\dots,\mathcal E_d), $$ where $V_d(\cdot,\dots,\cdot)$ denotes the mixed volume. We also generalize this result to the case of rectangular matrices. As a direct corollary we get an analytic expression for the mixed volume of $d$ arbitrary ellipsoids in $\mathbb R^d$. As another application, we consider a smooth centered non-degenerate Gaussian random field $X=(X_1,\dots,X_k)^\top\colon\mathbb R^d\to\mathbb R^k$. Using the Kac–Rice formula, we obtain the geometric interpretation of the intensity of zeros of $X$ in terms of the mixed volume of location-dispersion ellipsoids of the gradients of $X_i/\sqrt{\mathbf{Var}X_i}$. This relates the zero sets of equations to the mixed volumes in a way which resembles the well-known Bernstein theorem on the number of solutions of a typical system of algebraic equations.
@article{ZNSL_2012_408_a11,
     author = {D. N. Zaporozhets and Z. Kabluchko},
     title = {Random determinants, mixed volumes of ellipsoids, and zeros of {Gaussian} random fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--196},
     year = {2012},
     volume = {408},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a11/}
}
TY  - JOUR
AU  - D. N. Zaporozhets
AU  - Z. Kabluchko
TI  - Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 187
EP  - 196
VL  - 408
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a11/
LA  - ru
ID  - ZNSL_2012_408_a11
ER  - 
%0 Journal Article
%A D. N. Zaporozhets
%A Z. Kabluchko
%T Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 187-196
%V 408
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a11/
%G ru
%F ZNSL_2012_408_a11
D. N. Zaporozhets; Z. Kabluchko. Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 187-196. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a11/

[1] J. M. Azaïs, M. Wschebor, Level sets and extrema of random processes and fields, Wiley, 2009 | MR | Zbl

[2] A. Barvinok, “Computing mixed discriminants, mixed volumes, and permanents”, Discrete Comput. Geom., 18:2 (1997), 205–237 | DOI | MR | Zbl

[3] D. N. Bernshtein, “Chislo kornei sistemy uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 1–4 | MR | Zbl

[4] Yu. D. Burago, V. A. Zalgaller, Geometricheskie neravenstva, Nauka, 1980 | MR | Zbl

[5] N. R. Goodman, “The distribution of the determinant of a complex Wishart distributed matrix”, Ann. Math. Statist., 34:1 (1963), 178–180 | DOI | MR | Zbl

[6] W. C. Karl, G. C. Verghese, A. S. Willsky, “Reconstructing ellipsoids from projections”, CVGIP: Graphical Model and Image Processing, 56:2 (1994), 124–139 | DOI

[7] H. Minkowski, “Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs”, Gesammelte Abhandlungen, 2 (1911), 131–229

[8] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer-Verlag, 2008 | MR

[9] V. N. Sudakov, “Geometricheskie problemy teorii beskonechnomernykh veroyatnostnykh raspredelenii”, Trudy MIAN, 141, 1976, 3–191 | MR | Zbl

[10] S. S. Wilks, “Moment-generating operators for determinants of product moments in samples from a normal system”, Ann. Math., 35:2 (1934), 312–340 | DOI | MR | Zbl