Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 187-196

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a $d\times d$ matrix $M$ whose rows are independent centered non-degenerate Gaussian vectors $\xi_1,\ldots,\xi_d$ with covariance matrices $\Sigma_1,\dots,\Sigma_d$. Denote by $\mathcal E_i$ the location-dispersion ellipsoid of $\xi_i$: $\mathcal E_i=\{\mathbf x\in\mathbb R^d\colon\mathbf x^\top\Sigma_i^{-1} \mathbf x\leqslant1\}$. We show that $$ \mathbb E\,|\det M|=\frac{d!}{(2\pi)^{d/2}}V_d(\mathcal{E}_1,\dots,\mathcal E_d), $$ where $V_d(\cdot,\dots,\cdot)$ denotes the mixed volume. We also generalize this result to the case of rectangular matrices. As a direct corollary we get an analytic expression for the mixed volume of $d$ arbitrary ellipsoids in $\mathbb R^d$. As another application, we consider a smooth centered non-degenerate Gaussian random field $X=(X_1,\dots,X_k)^\top\colon\mathbb R^d\to\mathbb R^k$. Using the Kac–Rice formula, we obtain the geometric interpretation of the intensity of zeros of $X$ in terms of the mixed volume of location-dispersion ellipsoids of the gradients of $X_i/\sqrt{\mathbf{Var}X_i}$. This relates the zero sets of equations to the mixed volumes in a way which resembles the well-known Bernstein theorem on the number of solutions of a typical system of algebraic equations.
@article{ZNSL_2012_408_a11,
     author = {D. N. Zaporozhets and Z. Kabluchko},
     title = {Random determinants, mixed volumes of ellipsoids, and zeros of {Gaussian} random fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--196},
     publisher = {mathdoc},
     volume = {408},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a11/}
}
TY  - JOUR
AU  - D. N. Zaporozhets
AU  - Z. Kabluchko
TI  - Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 187
EP  - 196
VL  - 408
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a11/
LA  - ru
ID  - ZNSL_2012_408_a11
ER  - 
%0 Journal Article
%A D. N. Zaporozhets
%A Z. Kabluchko
%T Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 187-196
%V 408
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a11/
%G ru
%F ZNSL_2012_408_a11
D. N. Zaporozhets; Z. Kabluchko. Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 187-196. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a11/