On the approximation of convolutions by accompanying laws in the scheme of series
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 175-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of the approximation of convolutions by accompanying laws in the scheme of series satisfying the infinitesimality condition is considered. It is shown that the quality of approximation depends essentially on the choice of centering constants.
@article{ZNSL_2012_408_a10,
     author = {A. Yu. Zaitsev},
     title = {On the approximation of convolutions by accompanying laws in the scheme of series},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--186},
     year = {2012},
     volume = {408},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a10/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - On the approximation of convolutions by accompanying laws in the scheme of series
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 175
EP  - 186
VL  - 408
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a10/
LA  - ru
ID  - ZNSL_2012_408_a10
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T On the approximation of convolutions by accompanying laws in the scheme of series
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 175-186
%V 408
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a10/
%G ru
%F ZNSL_2012_408_a10
A. Yu. Zaitsev. On the approximation of convolutions by accompanying laws in the scheme of series. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 175-186. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a10/

[1] T. V. Arak, A. Yu. Zaitsev, Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Trudy MIAN, 174, 1986 | MR | Zbl

[2] Y. Davydov, V. Rotar, “On asymptotic proximity of distributions”, J. Theoret. Probab., 22:1 (2009), 82–98 | DOI | MR | Zbl

[3] B. V. Gnedenko, A. N. Kolmogorov, Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, GITTL, M., 1949

[4] I. A. Ibragimov, E. L. Presman, “O sblizhenii raspredelenii summ nezavisimykh sluchainykh velichin s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 18:4 (1973), 753–766 | MR | Zbl

[5] A. N. Kolmogorov, “Nekotorye raboty poslednikh let v oblasti teorii veroyatnostei”, Vestnik MGU, 1953, no. 10, 29–38 | Zbl

[6] A. N. Kolmogorov, “Dve ravnomernye predelnye teoremy dlya summ nezavisimykh slagaemykh”, Teoriya veroyatn. i ee primen., 1:4 (1956), 426–436 | MR

[7] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[8] Yu. V. Prokhorov, “Asimptoticheskoe povedenie binomialnogo raspredeleniya”, Uspekhi matem. nauk, 8:3 (1953), 135–142 | MR | Zbl

[9] A. Yu. Zaitsev, T. V. Arak, “O skorosti skhodimosti vo vtoroi ravnomernoi predelnoi teoreme Kolmogorova”, Teoriya veroyatn. i ee primen., 28:2 (1983), 333–353 | MR | Zbl

[10] A. Yu. Zaitsev, “Mnogomernyi variant vtoroi ravnomernoi predelnoi teoremy Kolmogorova”, Teoriya veroyatn. i ee primen., 34:1 (1989), 128–151 | MR | Zbl

[11] A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional central limit theorem”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. III, Invited lectures, Higher Ed. Press, Beijing, 2002, 107–116 | MR | Zbl