@article{ZNSL_2012_408_a10,
author = {A. Yu. Zaitsev},
title = {On the approximation of convolutions by accompanying laws in the scheme of series},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--186},
year = {2012},
volume = {408},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a10/}
}
A. Yu. Zaitsev. On the approximation of convolutions by accompanying laws in the scheme of series. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 18, Tome 408 (2012), pp. 175-186. http://geodesic.mathdoc.fr/item/ZNSL_2012_408_a10/
[1] T. V. Arak, A. Yu. Zaitsev, Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Trudy MIAN, 174, 1986 | MR | Zbl
[2] Y. Davydov, V. Rotar, “On asymptotic proximity of distributions”, J. Theoret. Probab., 22:1 (2009), 82–98 | DOI | MR | Zbl
[3] B. V. Gnedenko, A. N. Kolmogorov, Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, GITTL, M., 1949
[4] I. A. Ibragimov, E. L. Presman, “O sblizhenii raspredelenii summ nezavisimykh sluchainykh velichin s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 18:4 (1973), 753–766 | MR | Zbl
[5] A. N. Kolmogorov, “Nekotorye raboty poslednikh let v oblasti teorii veroyatnostei”, Vestnik MGU, 1953, no. 10, 29–38 | Zbl
[6] A. N. Kolmogorov, “Dve ravnomernye predelnye teoremy dlya summ nezavisimykh slagaemykh”, Teoriya veroyatn. i ee primen., 1:4 (1956), 426–436 | MR
[7] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR
[8] Yu. V. Prokhorov, “Asimptoticheskoe povedenie binomialnogo raspredeleniya”, Uspekhi matem. nauk, 8:3 (1953), 135–142 | MR | Zbl
[9] A. Yu. Zaitsev, T. V. Arak, “O skorosti skhodimosti vo vtoroi ravnomernoi predelnoi teoreme Kolmogorova”, Teoriya veroyatn. i ee primen., 28:2 (1983), 333–353 | MR | Zbl
[10] A. Yu. Zaitsev, “Mnogomernyi variant vtoroi ravnomernoi predelnoi teoremy Kolmogorova”, Teoriya veroyatn. i ee primen., 34:1 (1989), 128–151 | MR | Zbl
[11] A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional central limit theorem”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. III, Invited lectures, Higher Ed. Press, Beijing, 2002, 107–116 | MR | Zbl