On some continuity theorem for constructive functions
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XII, Tome 407 (2012), pp. 17-34

Voir la notice de l'article provenant de la source Math-Net.Ru

One proves that any everywhere defined constructive mapping from a compact metric space into a complete metric space which preserves the property of precompacity of subsets is uniformly continuous.
@article{ZNSL_2012_407_a1,
     author = {A. A. Vladimirov},
     title = {On some continuity theorem for constructive functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--34},
     publisher = {mathdoc},
     volume = {407},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_407_a1/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - On some continuity theorem for constructive functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 17
EP  - 34
VL  - 407
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_407_a1/
LA  - ru
ID  - ZNSL_2012_407_a1
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T On some continuity theorem for constructive functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 17-34
%V 407
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_407_a1/
%G ru
%F ZNSL_2012_407_a1
A. A. Vladimirov. On some continuity theorem for constructive functions. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part XII, Tome 407 (2012), pp. 17-34. http://geodesic.mathdoc.fr/item/ZNSL_2012_407_a1/