On existence of noncritical vertices in digraphs
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 107-116
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $D$ be a strongly connected digraph on $n\ge4$ vertices. A vertex $v$ of $D$ is noncritical, if the digraph $D-v$ is strongly connected. We prove, that if sum of the degrees of any two adjacent vertices of $D$ is at least $n+1$, then there exists a noncritical vertex in $D$, and if sum of the degrees of any two adjacent vertices of $D$ is at least $n+2$, then there exist two noncritical vertices in $D$. A series of examples confirm that these bounds are tight.
			
            
            
            
          
        
      @article{ZNSL_2012_406_a5,
     author = {G. V. Nenashev},
     title = {On existence of noncritical vertices in digraphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {406},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a5/}
}
                      
                      
                    G. V. Nenashev. On existence of noncritical vertices in digraphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 107-116. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a5/