On a bound on the chromatic number of almost planar graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 95-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a graph, which can be drawn on the plane such that any edge intersects at most one other edge. We prove, that the chromatic number of $G$ does not exceed 7. We also prove the bound $\chi(G)\leq\frac{9+\sqrt{17+64g}}2$ for a graph $G$, which can be drawn on the surface of genus $g$, such that any edge intersects at most one other edge.
@article{ZNSL_2012_406_a4,
     author = {G. V. Nenashev},
     title = {On a~bound on the chromatic number of almost planar graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--106},
     year = {2012},
     volume = {406},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/}
}
TY  - JOUR
AU  - G. V. Nenashev
TI  - On a bound on the chromatic number of almost planar graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 95
EP  - 106
VL  - 406
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/
LA  - ru
ID  - ZNSL_2012_406_a4
ER  - 
%0 Journal Article
%A G. V. Nenashev
%T On a bound on the chromatic number of almost planar graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 95-106
%V 406
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/
%G ru
%F ZNSL_2012_406_a4
G. V. Nenashev. On a bound on the chromatic number of almost planar graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 95-106. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/

[1] K. Appel, W. Haken, Every Planar Map Is Four Colorable, A.M.S. Contemp. Math., 98, 1989 | DOI | MR | Zbl

[2] K. Appel, W. Haken, “Every map is four colourable, Part I: Discharging”, Illinois J. Math., 21 (1977), 429–490 | MR | Zbl

[3] K. Appel, W. Haken, “Every map is four colourable, Part II: Reducibility”, Illinois J. Math., 21 (1977), 491–567 | MR | Zbl

[4] P. J. Heawood, “Map colour theorem”, Quart. J. Math., 24 (1890), 332–338

[5] D. V. Karpov, “Verkhnyaya otsenka kolichestva rëber v dvudolnom pochti planarnom grafe”, Zap. nauchn. semin. POMI, 406, 2012, 12–30 | MR

[6] J. Pach, G. Tóth, “Graphs drawn with few crossing per edge”, Combinatorica, 17:3 (1997), 427–439 | DOI | MR | Zbl

[7] G. Ringel, J. W. T. Youngs, “Solution of the Heawood map-coloring problem”, Proc. Nat. Acad. Sci. USA, 60:2 (1968), 438–445 | DOI | MR | Zbl

[8] N. Robertson, D. Sanders, P. Seymour, R. Thomas, “The Four-Colour Theorem”, J. Comb. Theory Ser. B, 70 (1997), 2–44 | DOI | MR | Zbl