On a~bound on the chromatic number of almost planar graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 95-106

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a graph, which can be drawn on the plane such that any edge intersects at most one other edge. We prove, that the chromatic number of $G$ does not exceed 7. We also prove the bound $\chi(G)\leq\frac{9+\sqrt{17+64g}}2$ for a graph $G$, which can be drawn on the surface of genus $g$, such that any edge intersects at most one other edge.
@article{ZNSL_2012_406_a4,
     author = {G. V. Nenashev},
     title = {On a~bound on the chromatic number of almost planar graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--106},
     publisher = {mathdoc},
     volume = {406},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/}
}
TY  - JOUR
AU  - G. V. Nenashev
TI  - On a~bound on the chromatic number of almost planar graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 95
EP  - 106
VL  - 406
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/
LA  - ru
ID  - ZNSL_2012_406_a4
ER  - 
%0 Journal Article
%A G. V. Nenashev
%T On a~bound on the chromatic number of almost planar graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 95-106
%V 406
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/
%G ru
%F ZNSL_2012_406_a4
G. V. Nenashev. On a~bound on the chromatic number of almost planar graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 95-106. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/