@article{ZNSL_2012_406_a4,
author = {G. V. Nenashev},
title = {On a~bound on the chromatic number of almost planar graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {95--106},
year = {2012},
volume = {406},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/}
}
G. V. Nenashev. On a bound on the chromatic number of almost planar graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 95-106. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a4/
[1] K. Appel, W. Haken, Every Planar Map Is Four Colorable, A.M.S. Contemp. Math., 98, 1989 | DOI | MR | Zbl
[2] K. Appel, W. Haken, “Every map is four colourable, Part I: Discharging”, Illinois J. Math., 21 (1977), 429–490 | MR | Zbl
[3] K. Appel, W. Haken, “Every map is four colourable, Part II: Reducibility”, Illinois J. Math., 21 (1977), 491–567 | MR | Zbl
[4] P. J. Heawood, “Map colour theorem”, Quart. J. Math., 24 (1890), 332–338
[5] D. V. Karpov, “Verkhnyaya otsenka kolichestva rëber v dvudolnom pochti planarnom grafe”, Zap. nauchn. semin. POMI, 406, 2012, 12–30 | MR
[6] J. Pach, G. Tóth, “Graphs drawn with few crossing per edge”, Combinatorica, 17:3 (1997), 427–439 | DOI | MR | Zbl
[7] G. Ringel, J. W. T. Youngs, “Solution of the Heawood map-coloring problem”, Proc. Nat. Acad. Sci. USA, 60:2 (1968), 438–445 | DOI | MR | Zbl
[8] N. Robertson, D. Sanders, P. Seymour, R. Thomas, “The Four-Colour Theorem”, J. Comb. Theory Ser. B, 70 (1997), 2–44 | DOI | MR | Zbl