@article{ZNSL_2012_406_a1,
author = {D. V. Karpov},
title = {Upper bound on the number of edges of an almost planar bipartite graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {12--30},
year = {2012},
volume = {406},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a1/}
}
D. V. Karpov. Upper bound on the number of edges of an almost planar bipartite graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 12-30. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a1/
[1] J. Pach, G. Tóth, “Graphs drawn with few crossing per edge”, Combinatorica, 17:3 (1997), 427–439 | DOI | MR | Zbl
[2] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, “Quasi-planar graphs have a linear number of edges”, Combinatorica, 17:1 (1997), 1–9 | DOI | MR | Zbl
[3] E. Ackerman, G. Tardos, “On the maximum number of edges in quasi-planar graphs”, J. Comb. Theory Ser. A, 114:3 (2007), 563–571 | DOI | MR | Zbl
[4] E. Ackerman, “On the maximum number of edges in topological graphs with no four pairwise crossing edges”, Discrete Comput. Geom., 41:3 (2009), 365–375 | DOI | MR | Zbl
[5] G. Tardos, G. Tóth, “Crossing stars in topological graphs”, SIAM J. Discrete Math., 21:3 (2007), 737–749 | DOI | MR | Zbl
[6] J. Pach, R. Pinchasi, G. Tardos, G. Tóth, “Geometric graphs with no self-intersecting path of length three”, (English summary), European J. Combin., 25:6 (2004), 793–811 | DOI | MR | Zbl