@article{ZNSL_2012_406_a0,
author = {S. L. Berlov},
title = {Uniform colorings of graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--11},
year = {2012},
volume = {406},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a0/}
}
S. L. Berlov. Uniform colorings of graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a0/
[1] P. Erdos, “Some recent results on extremal problems in graph theory”, Theorie graphes, Journees internat etude Rome, 1966, 117–130 | MR
[2] P. Erdos, “Problems and results in chromatic graph theory”, Proof Techn. Graph Theory, New York–London, 1969, 27–36 | MR
[3] P. Erdos, “Some unsolved problems in graph theory and combinatorial analysis”, Combinator. Math. Appl., London–New York, 1971, 97–109 | MR | Zbl
[4] S. L. Berlov, V. L. Dol'nikov, “Some generalization of theorems on a vertex colouring”, J. Combinat. Theory Ser. A, 113:7 (2006), 1582–1585 | DOI | MR | Zbl
[5] N. Alon, “The strong chromatic number of a graph”, Random Struct. Alg., 3 (1992), 1–7 | DOI | MR | Zbl
[6] P. E. Haxell, “On the strong chromatic number”, Combinat. Probab. Comput., 13:6 (2004), 857–865 | DOI | MR | Zbl
[7] S. L. Berlov, “Sootnosheniya mezhdu klikovym chislom, khromaticheskim chislom i stepenyu dlya nekotorykh vidov grafov”, Modelirovanie i analiz informatsionnykh sistem, 15:4 (2008), 10–22