Uniform colorings of graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 5-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let uniform proper coloring of a graph be a proper coloring in which all colors have equal numbers of vertices. We prove new conditions of existence of uniform colorings.
@article{ZNSL_2012_406_a0,
     author = {S. L. Berlov},
     title = {Uniform colorings of graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--11},
     year = {2012},
     volume = {406},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a0/}
}
TY  - JOUR
AU  - S. L. Berlov
TI  - Uniform colorings of graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 5
EP  - 11
VL  - 406
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a0/
LA  - ru
ID  - ZNSL_2012_406_a0
ER  - 
%0 Journal Article
%A S. L. Berlov
%T Uniform colorings of graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 5-11
%V 406
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a0/
%G ru
%F ZNSL_2012_406_a0
S. L. Berlov. Uniform colorings of graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part V, Tome 406 (2012), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_2012_406_a0/

[1] P. Erdos, “Some recent results on extremal problems in graph theory”, Theorie graphes, Journees internat etude Rome, 1966, 117–130 | MR

[2] P. Erdos, “Problems and results in chromatic graph theory”, Proof Techn. Graph Theory, New York–London, 1969, 27–36 | MR

[3] P. Erdos, “Some unsolved problems in graph theory and combinatorial analysis”, Combinator. Math. Appl., London–New York, 1971, 97–109 | MR | Zbl

[4] S. L. Berlov, V. L. Dol'nikov, “Some generalization of theorems on a vertex colouring”, J. Combinat. Theory Ser. A, 113:7 (2006), 1582–1585 | DOI | MR | Zbl

[5] N. Alon, “The strong chromatic number of a graph”, Random Struct. Alg., 3 (1992), 1–7 | DOI | MR | Zbl

[6] P. E. Haxell, “On the strong chromatic number”, Combinat. Probab. Comput., 13:6 (2004), 857–865 | DOI | MR | Zbl

[7] S. L. Berlov, “Sootnosheniya mezhdu klikovym chislom, khromaticheskim chislom i stepenyu dlya nekotorykh vidov grafov”, Modelirovanie i analiz informatsionnykh sistem, 15:4 (2008), 10–22