Antilinear operators and special matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 119-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The following facts are proved: (a) Concommutation of complex matrices means the conventional commutation of the antilinear operators defined by these matrices. (b) Symmetric, skew-symmetric, unitary, and conjugate-normal matrices interpreted as antilinear operators acting in the unitary space $\mathbb C^n$ are Hermitian, skew-Hermitian, unitary, and normal operators, respectively.
@article{ZNSL_2012_405_a8,
     author = {Kh. D. Ikramov},
     title = {Antilinear operators and special matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {405},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a8/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Antilinear operators and special matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 119
EP  - 126
VL  - 405
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a8/
LA  - ru
ID  - ZNSL_2012_405_a8
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Antilinear operators and special matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 119-126
%V 405
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a8/
%G ru
%F ZNSL_2012_405_a8
Kh. D. Ikramov. Antilinear operators and special matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 119-126. http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a8/