Monotone maps on matrices of index one
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 67-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper investigates bijective maps on the set of matrices of index one that are monotone with respect to the order induced by the group inverse.
@article{ZNSL_2012_405_a6,
     author = {A. E. Guterman and M. A. Efimov},
     title = {Monotone maps on matrices of index one},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--96},
     year = {2012},
     volume = {405},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a6/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - M. A. Efimov
TI  - Monotone maps on matrices of index one
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 67
EP  - 96
VL  - 405
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a6/
LA  - ru
ID  - ZNSL_2012_405_a6
ER  - 
%0 Journal Article
%A A. E. Guterman
%A M. A. Efimov
%T Monotone maps on matrices of index one
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 67-96
%V 405
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a6/
%G ru
%F ZNSL_2012_405_a6
A. E. Guterman; M. A. Efimov. Monotone maps on matrices of index one. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 67-96. http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a6/

[1] A. Alieva, A. Guterman, “Monotone linear maps on matrices are invertible”, Communs. Algebra, 33 (2005), 3335–3352 | DOI | MR | Zbl

[2] J. K. Baksalary, F. Pukelsheim, G. P. H. Styan, “Some properties of matrix partial orderings”, Linear Algebra Appl., 119 (1989), 57–85 | DOI | MR | Zbl

[3] A. Ben-Israel, T. Greville, Generalized Inverses: Theory and Applications, John Wiley and Sons, New York, 1974 | MR | Zbl

[4] I. I. Bogdanov, A. E. Guterman, “Monotonnye otobrazheniya matrits, zadannye gruppovoi obratnoi, i odnovremennaya diagonalizuemost”, Mat. sbornik, 198:1 (2007), 3–20 | DOI | MR | Zbl

[5] W.-L. Chooi, M.-H. Lim, “Additive preservers of rank-additivity on matrix spaces”, Linear Algebra Appl., 402 (2005), 291–302 | DOI | MR | Zbl

[6] G. Dolinar, J. Marovt, “Star partial order on $B(H)$”, Linear Algebra Appl., 434 (2011), 319–326 | DOI | MR | Zbl

[7] M. A. Efimov, “Lineinye otobrazheniya matrits, monotonnye otnositelno poryadkov $\overset\sharp\leq$ i $\overset{\mathrm{cn}}\leq$”, Fund. prikl. mat., 13:4 (2007), 53–66 | MR | Zbl

[8] M. H. Englefield, “The commuting inverses of a square matrix”, Proc. Cambridge Phil. Soc., 62 (1966), 667–671 | DOI | MR | Zbl

[9] I. Erdelyi, “On the matrix equation $Ax=\lambda Bx$”, J. Math. Anal. Appl., 17 (1967), 117–132 | DOI | MR

[10] C.-A. Faure, “An elementary proof of the fundamental theorem of projective geometry”, Geom. Dedicata, 90 (2002), 145–151 | DOI | MR | Zbl

[11] L. C. Grove, Algebra, Academic Press, New York, 1983 | MR | Zbl

[12] A. Guterman, “Linear preservers for Drazin star partial order”, Communs. Algebra, 29:9 (2001), 3905–3917 | DOI | MR | Zbl

[13] A. Guterman, “Linear preservers for matrix inequalities and partial orderings”, Linear Algebra Appl., 331:1–3 (2001), 75–87 | DOI | MR | Zbl

[14] A. E. Guterman, “Monotonnye additivnye otobrazheniya matrits”, Mat. zametki, 81:5 (2007), 681–692 | DOI | MR | Zbl

[15] A. Guterman, “Monotone matrix maps preserve non-maximal rank”, Polynomial identities and combinatorial methods, Lect. Notes Pure Appl. Math., 235, 2003, 311–328 | MR | Zbl

[16] B. Hartley, T. O. Hawkes, Rings, Modules, and Linear Algebra, Chapman and Hall Ltd., London, 1970 | MR | Zbl

[17] R. E. Hartwig, “How to partially order regular elements”, Math. Japonica, 25:1 (1980), 1–13 | MR | Zbl

[18] R. E. Hartwig, S. K. Mitra, “Partial Orders Based on Outer Inverses”, Linear Algebra Appl., 176 (1982), 3–20 | MR

[19] P. Legiša, “Automorphisms of $M_n$, partially ordered by rank subtractivity ordering”, Linear Algebra Appl., 389 (2004), 147–158 | DOI | MR | Zbl

[20] P. Legiša, “Automorphisms of $M_n$, partially ordered by the star order”, Linear Multilinear Algebra, 54:3 (2006), 157–188 | DOI | MR | Zbl

[21] S. K. Mitra, “A new class of $g$-inverse of square matrices”, Sankhyā Ser. A, 30 (1963), 323–330 | MR

[22] S. K. Mitra, “On group inverses and the sharp order”, Linear Algebra Appl., 92 (1987), 17–37 | DOI | MR | Zbl

[23] S. K. Mitra, P. Bhimasankaram, S. B. Malik, Matrix Partial Orderings, Shorted Opetrators and Applications, World Scientific, 2010, 446 pp. | MR

[24] K. S. S. Nambooripad, “The natural partial order on a regular semigroup”, Proc. Edinburgh Math. Soc., 23 (1980), 249–260 | DOI | MR | Zbl

[25] P. G. Ovchinnikov, “Automorphisms of the poset of skew projections”, J. Funct. Anal., 115 (1993), 184–189 | DOI | MR | Zbl

[26] S. Pierce et al., “A survey of linear preserver problems”, Linear Multilinear Algebra, 33 (1992), 1–119 | DOI | Zbl

[27] J. De Pillis, “Linear maps which preserve hermitian and positive semidefinite operators”, Pacific J. Math., 23 (1967), 129–137 | DOI | MR | Zbl

[28] C. R. Rao, S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971 | MR | Zbl

[29] P. Robert, “On the group-inverse of a linear map”, J. Math. Anal. Appl., 22 (1968), 658–669 | DOI | MR | Zbl

[30] P. Šemrl, “Nonlinear commutativity preserving maps”, Acta Sci. Math. (Szeged), 71 (2005), 781–819 | MR | Zbl

[31] P. Šemrl, “Order-preserving maps on the poset of idempotent matrices”, Acta Sci. Math. (Szeged), 69 (2003), 481–490 | MR | Zbl

[32] P. Šemrl, “Automorphisms of $B(H)$ with respect to minus partial order”, J. Math. Anal. Appl., 369 (2010), 205–213 | DOI | MR | Zbl

[33] J. H. M. Wedderburn, Lectures on Matrices, AMS Colloquium Publications, 17, New York, 1934 | MR | Zbl