Numerical solution of the matrix equations $AX+X^TB=C$ and $X+AX^TB=C$ with rectangular coefficients
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 54-58
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown how one should supplement the orthogonal algorithms previously proposed by the authors for the equations in the title of the article with square matrix coefficients so that these algorithms are able to solve equations with rectangular coefficients, provided that the latter satisfy the unique solvability.
@article{ZNSL_2012_405_a4,
author = {Y. O. Vorontsov and Kh. D. Ikramov},
title = {Numerical solution of the matrix equations $AX+X^TB=C$ and $X+AX^TB=C$ with rectangular coefficients},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--58},
year = {2012},
volume = {405},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a4/}
}
TY - JOUR AU - Y. O. Vorontsov AU - Kh. D. Ikramov TI - Numerical solution of the matrix equations $AX+X^TB=C$ and $X+AX^TB=C$ with rectangular coefficients JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 54 EP - 58 VL - 405 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a4/ LA - ru ID - ZNSL_2012_405_a4 ER -
Y. O. Vorontsov; Kh. D. Ikramov. Numerical solution of the matrix equations $AX+X^TB=C$ and $X+AX^TB=C$ with rectangular coefficients. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 54-58. http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a4/
[1] Yu. O. Vorontsov, Kh. D. Ikramov, “Chislennyi algoritm dlya resheniya matrichnogo uravneniya $AX+X^TB=C$”, Zh. vychisl. matem. matem. fiz., 51:5 (2011), 739–747 | MR | Zbl
[2] Kh. D. Ikramov, Yu. O. Vorontsov, “Matrichnoe uravnenie $X+AX^TB=C$: usloviya odnoznachnoi razreshimosti i algoritm chislennogo resheniya”, Dokl. RAN, 443:5 (2012), 545–548 | MR | Zbl
[3] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR