Unitary congruence to a conjugate-normal matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 133-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A matrix $A\in M_n(\mathbb C)$ is said to be conjugate-normal if $AA^*=\overline{A^*A}.$ The following proposition (which is the congruence analog of a recent result of T. G. Gerasimova) is proved: A matrix $B\in M_n(\mathbb C)$ is unitarily congruent to a conjugate-normal matrix $A$ if and only if $$ \mathrm{tr}[(\bar AA)^i]=\mathrm{tr}[(\bar BB)^i],\qquad i=1,\dots,n, $$ and $$ \|A\|_F=\|B\|_F. $$ This proposition dramatically reduces the amount of computational work for verifying unitary congruence as compared to the case of general matrices $A$ and $B$.
@article{ZNSL_2012_405_a10,
     author = {Kh. D. Ikramov},
     title = {Unitary congruence to a~conjugate-normal matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--137},
     year = {2012},
     volume = {405},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a10/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Unitary congruence to a conjugate-normal matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 133
EP  - 137
VL  - 405
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a10/
LA  - ru
ID  - ZNSL_2012_405_a10
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Unitary congruence to a conjugate-normal matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 133-137
%V 405
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a10/
%G ru
%F ZNSL_2012_405_a10
Kh. D. Ikramov. Unitary congruence to a conjugate-normal matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 133-137. http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a10/

[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR

[2] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type I”, Pacific J. Math., 12 (1962), 1405–1416 | DOI | MR | Zbl

[3] T. G. Gerasimova, “Unitary similarity to a normal matrix”, Linear Algebra Appl., 436 (2012), 3777–3783 | DOI | MR | Zbl

[4] R. Grone, C. R. Johnson, E. M. Sa, H. Wolkowicz, “Normal matrices”, Linear Algebra Appl., 87 (1987), 213–225 | DOI | MR | Zbl

[5] Yu. A. Alpin, Kh. D. Ikramov, “Kriterii unitarnoi kongruentnosti matrits”, Dokl. RAN, 437:1 (2011), 7–8 | MR | Zbl

[6] Yu. A. Alpin, Kh. D. Ikramov, “Kriterii unitarnoi kongruentnosti matrits”, Zap. nauchn. semin. POMI, 395, 2011, 9–19 | MR

[7] Kh. D. Ikramov, “Kriterii unitarnoi kongruentnosti sopryazhenno-normalnykh matrits”, Dokl. RAN, 410:1 (2006), 17–18 | MR | Zbl

[8] H. Fassbender, Kh. D. Ikramov, “Conjugate-normal matrices: A survey”, Linear Algebra Appl., 429 (2008), 1425–1441 | DOI | MR | Zbl