Combinatorial properties of irreducible semigroups of nonnegative matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 13-23
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper suggests a combinatorial proof of the Protasov–Voynov theorem on an irreducible semigroup of nonnegative matrices free of positive matrices. This solves the problem posed by the authors of the theorem.
@article{ZNSL_2012_405_a1,
author = {Yu. A. Al'pin and V. S. Al'pina},
title = {Combinatorial properties of irreducible semigroups of nonnegative matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {13--23},
publisher = {mathdoc},
volume = {405},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a1/}
}
TY - JOUR AU - Yu. A. Al'pin AU - V. S. Al'pina TI - Combinatorial properties of irreducible semigroups of nonnegative matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 13 EP - 23 VL - 405 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a1/ LA - ru ID - ZNSL_2012_405_a1 ER -
Yu. A. Al'pin; V. S. Al'pina. Combinatorial properties of irreducible semigroups of nonnegative matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 13-23. http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a1/