Combinatorial properties of irreducible semigroups of nonnegative matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 13-23
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper suggests a combinatorial proof of the Protasov–Voynov theorem on an irreducible semigroup of nonnegative matrices free of positive matrices. This solves the problem posed by the authors of the theorem.
@article{ZNSL_2012_405_a1,
author = {Yu. A. Al'pin and V. S. Al'pina},
title = {Combinatorial properties of irreducible semigroups of nonnegative matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {13--23},
year = {2012},
volume = {405},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a1/}
}
Yu. A. Al'pin; V. S. Al'pina. Combinatorial properties of irreducible semigroups of nonnegative matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXV, Tome 405 (2012), pp. 13-23. http://geodesic.mathdoc.fr/item/ZNSL_2012_405_a1/
[1] V. Yu. Protasov, “Polugruppy neotritsatelnykh matrits”, Uspekhi mat. nauk, 65:6 (2010), 191–192 | DOI | MR | Zbl
[2] V. Yu. Protasov, A. S. Voynov, “Sets of nonnegative matrices without positive products”, Linear Algebra Appl., 437 (2012), 749–765 | DOI | MR | Zbl
[3] V. Romanovsky, “Un théoréme sur les zéros des matrices nonnégatives”, Bull. Soc. Math. France, 61 (1933), 213–219 | MR | Zbl
[4] V. I. Romanovskii, Diskretnye tsepi Markova, Gostekhizdat, M., 1949
[5] H. Minc, Nonnegative Matrices, Wiley, New York, 1988 | MR | Zbl
[6] Yu. A. Alpin, V. S. Alpina, “Teorema Perrona–Frobeniusa: dokazatelstvo s pomoschyu tsepei Markova”, Zap. nauchn. semin. POMI, 359, 2008, 5–16 | Zbl