Voir la notice du chapitre de livre
@article{ZNSL_2012_404_a9,
author = {S. I. Kalmykov},
title = {Comparison of discrete and uniform norms of polynomials on a~segment and a~circle arc},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--183},
year = {2012},
volume = {404},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a9/}
}
S. I. Kalmykov. Comparison of discrete and uniform norms of polynomials on a segment and a circle arc. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 175-183. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a9/
[1] E. Rakhmanov, B. Shekhtman, “On discrete norms of polynomials”, J. Approx. Theory, 139 (2006), 2–7 | DOI | MR | Zbl
[2] T. Sheil-Small, “An inequality for the modulus of a polynomial evaluated at the roots of unity”, Bull. London Math. Soc., 40 (2008), 956–964 | DOI | MR | Zbl
[3] V. N. Dubinin, “K teoremam iskazheniya dlya algebraicheskikh polinomov”, Dalnevost. mat. zhurn., 11:1 (2011), 28–36 | MR | Zbl
[4] V. N. Dubinin, “Nizhnyaya granitsa dlya diskretnoi normy polinoma na okruzhnosti”, Mat. zametki, 90:2 (2011), 306–309 | DOI | MR | Zbl
[5] D. Coppersmith, T. Rivlin, “The growth of polynomials bounded at equally spaced points”, SIAM J. Math. Anal., 23 (1992), 970–983 | DOI | MR | Zbl
[6] E. A. Rakhmanov, “Bounds for polynomials with a unit discrete norm”, Annals of Math., 165 (2007), 55–88 | DOI | MR | Zbl
[7] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl
[8] V. N. Dubinin, S. I. Kalmykov, “O polinomakh s ogranicheniyami na dugakh okruzhnosti”, Zap. nauchn. semin. POMI, 392, 2011, 74–83 | MR