Comparison of discrete and uniform norms of polynomials on a segment and a circle arc
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 175-183
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper inequalities containing discrete and uniform norms of polynomials on an interval and a circle arc are proved. The proofs are based on Bernstein-type inequalities. Obtained inequalities supplement some corresponding results of Rakhmanov, Shekhtman, Sheil-Small, Dubinin.
@article{ZNSL_2012_404_a9,
     author = {S. I. Kalmykov},
     title = {Comparison of discrete and uniform norms of polynomials on a~segment and a~circle arc},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--183},
     year = {2012},
     volume = {404},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a9/}
}
TY  - JOUR
AU  - S. I. Kalmykov
TI  - Comparison of discrete and uniform norms of polynomials on a segment and a circle arc
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 175
EP  - 183
VL  - 404
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a9/
LA  - ru
ID  - ZNSL_2012_404_a9
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%T Comparison of discrete and uniform norms of polynomials on a segment and a circle arc
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 175-183
%V 404
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a9/
%G ru
%F ZNSL_2012_404_a9
S. I. Kalmykov. Comparison of discrete and uniform norms of polynomials on a segment and a circle arc. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 175-183. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a9/

[1] E. Rakhmanov, B. Shekhtman, “On discrete norms of polynomials”, J. Approx. Theory, 139 (2006), 2–7 | DOI | MR | Zbl

[2] T. Sheil-Small, “An inequality for the modulus of a polynomial evaluated at the roots of unity”, Bull. London Math. Soc., 40 (2008), 956–964 | DOI | MR | Zbl

[3] V. N. Dubinin, “K teoremam iskazheniya dlya algebraicheskikh polinomov”, Dalnevost. mat. zhurn., 11:1 (2011), 28–36 | MR | Zbl

[4] V. N. Dubinin, “Nizhnyaya granitsa dlya diskretnoi normy polinoma na okruzhnosti”, Mat. zametki, 90:2 (2011), 306–309 | DOI | MR | Zbl

[5] D. Coppersmith, T. Rivlin, “The growth of polynomials bounded at equally spaced points”, SIAM J. Math. Anal., 23 (1992), 970–983 | DOI | MR | Zbl

[6] E. A. Rakhmanov, “Bounds for polynomials with a unit discrete norm”, Annals of Math., 165 (2007), 55–88 | DOI | MR | Zbl

[7] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[8] V. N. Dubinin, S. I. Kalmykov, “O polinomakh s ogranicheniyami na dugakh okruzhnosti”, Zap. nauchn. semin. POMI, 392, 2011, 74–83 | MR