Inequalities of type generalized Jackson theorem for best approximations
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 135-156
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Very simple methods to get upper estimates of type generalized Jackson theorem for best approximations of periodic function are proposed. These results are similar to generalized Jackson theorem which gives estimates in terms of moduli of continuity.
@article{ZNSL_2012_404_a7,
     author = {V. V. Zhuk},
     title = {Inequalities of type generalized {Jackson} theorem for best approximations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--156},
     year = {2012},
     volume = {404},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a7/}
}
TY  - JOUR
AU  - V. V. Zhuk
TI  - Inequalities of type generalized Jackson theorem for best approximations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 135
EP  - 156
VL  - 404
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a7/
LA  - ru
ID  - ZNSL_2012_404_a7
ER  - 
%0 Journal Article
%A V. V. Zhuk
%T Inequalities of type generalized Jackson theorem for best approximations
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 135-156
%V 404
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a7/
%G ru
%F ZNSL_2012_404_a7
V. V. Zhuk. Inequalities of type generalized Jackson theorem for best approximations. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 135-156. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a7/

[1] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, M., 1977

[2] R. A. De Vore, G. G. Lorentz, Constructive Approximation, Berlin–New York, 1993

[3] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, M., 1960

[4] N. I. Akhiezer, Lektsii po teorii approksimatsii, M., 1965

[5] Yu. A. Brudnyi, “Ob odnoi teoreme lokalnykh nailuchshikh priblizhenii”, Funkts. analiz i teoriya funktsii, Sb. 2, Kazan, 1964, 43–49 | MR

[6] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, L., 1982 | MR

[7] V. V. Zhuk, Strukturnye svoistva funktsii i tochnost approksimatsii, L., 1984

[8] V. V. Zhuk, V. F. Kuzyutin, Approksimatsiya funktsii i chislennoe integrirovanie, S.-Peterburg, 1995 | MR

[9] S. Foucart, Y. Kryakin, A. Shadrin, “On the exact constant on the Jackson–Stechkin inequality for the uniform metric”, Constr. Approx., 29 (2009), 157–179 | DOI | MR | Zbl

[10] O. L. Vinogradov, V. V. Zhuk, “Otsenki funktsionalov s izvestnoi posledovatelnostyu momentov cherez otkloneniya srednikh tipa Steklova”, Zap. nauchn. semin. POMI, 383, 2010, 5–32 | MR

[11] O. L. Vinogradov, V. V. Zhuk, “Skorost ubyvaniya konstant v neravenstvakh tipa Dzheksona v zavisimosti ot poryadka modulya nepreryvnosti”, Zap. nauchn. semin. POMI, 383, 2010, 33–52 | MR

[12] O. L. Vinogradov, V. V. Zhuk, “Otsenki funktsionalov s izvestnym konechnym naborom momentov cherez otkloneniya operatorov, postroennykh na osnove srednikh Steklova i konechnykh raznostei”, Zap. nauchn. semin. POMI, 392, 2011, 32–66 | MR