On an estimate in the class of typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 75-82
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $T(c_2,c_3)$ be the class of functions $f(z)=z+\sum^\infty_{n=2}c_nz^n$ regular and typically real in the disk $|z|<1$ with fixed values of the coefficients $c_2$ and $c_3$. The boundary functions of the region of values of $f(z_0)$ $(0<|z_0|<1)$ and sharp estimates for $f(r)$, $0, in the class $T(c_2,c_3)$ are determined.
@article{ZNSL_2012_404_a3,
     author = {E. G. Goluzina},
     title = {On an estimate in the class of typically real functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--82},
     year = {2012},
     volume = {404},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a3/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - On an estimate in the class of typically real functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 75
EP  - 82
VL  - 404
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a3/
LA  - ru
ID  - ZNSL_2012_404_a3
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T On an estimate in the class of typically real functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 75-82
%V 404
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a3/
%G ru
%F ZNSL_2012_404_a3
E. G. Goluzina. On an estimate in the class of typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 75-82. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a3/

[1] J. A. Jenkins, “Some probleme for typically real functions”, Canad. J. Math., 13 (1961), 427–431 | DOI | MR

[2] E. G. Goluzina, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v klasse tipichno veschestvennykh funktsii”, Vestn. LGU, 1965, no. 7, Cer. mat., mekh. i astr., vyp. 2, 45–62 | MR | Zbl

[3] M. S. Robertson, “On the coefficients of typically real function”, Bull. Amer. Math. Soc., 41 (1935), 565–572 | DOI | MR | Zbl

[4] G. M. Goluzin, “O tipichno veschestvennykh funktsiyakh”, Mat. cb., 27(69):2 (1950), 201–218 | MR | Zbl

[5] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, M., 1973 | MR

[6] F. R. Gantmakher, Teoriya matrits, 5-e izd., M., 2010