Voir la notice du chapitre de livre
@article{ZNSL_2012_404_a2,
author = {E. P. Golubeva},
title = {Random variables associated with the {Farey} tree},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {61--74},
year = {2012},
volume = {404},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a2/}
}
E. P. Golubeva. Random variables associated with the Farey tree. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 61-74. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a2/
[1] E. P. Golubeva, “O ploskoi vypukloi krivoi s bolshim chislom tselykh tochek”, Zap. nauchn. semin. POMI, 357, 2008, 22–32 | MR | Zbl
[2] F. V. Petrov, “O kolichestve ratsionalnykh tochek na strogo vypukloi krivoi”, Funkts. analiz i ego pril., 40:1 (2006), 30–42 | DOI | MR | Zbl
[3] H. P. F. Swinnerton-Dyer, “The number of lattice points on a convex curve”, J. Number Theory, 6 (1974), 128–135 | DOI | MR | Zbl
[4] E. Bombieri, J. Pila, “The number of integral points on arcs and ovals”, Duke Math. J., 59:2 (1989), 337–357 | DOI | MR | Zbl
[5] A. Plagne, “A uniform version of Jarnik theorem”, Acta Arith., 87:3 (1999), 255–267 | MR | Zbl
[6] M. Waldschmidt, P. Moussa, J.-M. Luck, C. Itzykson (Eds.), From Number Theory to Physics, Berlin, 1992 | MR
[7] A. Ya. Khinchin, Tsepnye drobi, M., 1961
[8] E. P. Golubeva, “Asimptoticheskoe raspredelenie tselykh tochek, prinadlezhaschikh zadannym klassam vychetov, na giperboloidakh spetsialnogo vida”, Mat. sb., 123(165):4 (1984), 510–533 | MR | Zbl